
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

Visualization of program performance on
concurrent computers
Diane Thiede Rover
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Rover, Diane Thiede, "Visualization of program performance on concurrent computers " (1989). Retrospective Theses and Dissertations.
9173.
https://lib.dr.iastate.edu/rtd/9173

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9173?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the
upper left-hand comer and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Order Number 9014946

Visualization of program performance on concurrent computers

Rover, Diane Thiede, Ph.D.

Iowa State University, 1989

U M I
SOON.ZeebRA
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

visualization of program performance

on concurrent computers

b y

Diane Thiede Rover

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Electrical Engineering and Computer
Engineering

Major: Computer Engineering

Approved:

In Charge of Ma]

e M x j o r Department

e Graduate Corlege

Members of the Committee:

Iowa State University
Ames, Iowa

1989

Copyright @ Diane Thiede Rover, 1989. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

CHAPTER I. INTRODUCTION 1

Concurrent Computation 2
Motivation 9
Complex Systems 11
Visualization 14
Scope of this Work 16

CHAPTER II. RELATED WORK 18

The Mapping Problem 18
Performance Analysis Tools 2 2

CHAPTER III. PERFORMANCE MONITORING 31

Evaluation Methods 31
Monitoring Complex Systems 37
Data Management 42
Perspectives 45

CHAPTER IV. REPRESENTING PERFORMANCE 50

Data Presentation 50
Categories of Concurrent Computers 52

CHAPTER V. PICTURES OF PERFORMANCE 59

Methodology 59
Observable Parameters 63

Basic metrics 64
Derived metrics 66

Graphics 93
Plots 94
Profiles 98

CHAPTER VI. PROTOTYPE IMPLEMENTATION 99

Simulation 99
Graphics Software 105
Case Studies in Visualization ill

System configuration 111
Broadcast communication program 115
Collect communication program 137
Shift communication program 155
Divide-and-conquer quicksort program 161
One-dimensional wave equation program 169

www.manaraa.com

iii

CHAPTER VII. DISCUSSION AND CONCLUSIONS 206

Future Work 206
A Question of Dimension 209
Research Contributions 210

BIBLIOGRAPHY 213

ACKNOWLEDGEMENTS 222

www.manaraa.com

iv

LIST OF TABLES

Table 4.1.

Table 6.1.

Table 6.2.

Table 6.3.

Table 6.4.

Table 6.5.

Table 6.6.

Table 6.7.

Table 6.8.

Table 6.9.

Table 6.10.

Table 6.11.

Table 6.12.

Table 6.13.

Table 6.14.

Page

Complexity categories for performance data
presentation formats 57

Simulation results for the case studies 118

Key for global statistics 119

Broadcast routine. Selected global
statistics for snapshot number 6 taken at
0.0072 seconds 120

Broadcast routine. Selected global
statistics for snapshot number 10 taken at
0.0144 seconds 121

Key for local statistics 122

Broadcast routine. Selected local
statistics for Processor 0, (x,y) = (0,0) 123

Broadcast routine. Selected local
statistics for Processor 100, (x,y) = (7,4) 124

Collect routine. Selected global statistics
for snapshot number 8 taken at 0.00315
seconds 144

Collect routine. Selected global statistics
for snapshot number 15 taken at 0.0168
seconds 145

Collect routine. Selected local
statistics for Processor 0, (x,y) = (0,0) 146

Collect routine. Selected local
statistics for Processor 100, (x,y) = (7,4) 147

Quicksort program. Selected global
statistics for snapshot number 10 taken at
0.02273 seconds 164

Quicksort program. Selected global
statistics for snapshot number 15 taken at
0.0279 seconds 165

Quicksort program. Selected local
statistics for Processor 0, (x,y) = (0,0) 166

www.manaraa.com

V

Table 6.15.

Table 6.16.

Table 6.17.

Table 6.18.

Table 6.19.

Table 6.20.

Table 6.21.

Quicksort program. Selected local
statistics for Processor 100, (x,y) = (7,4) 167

1-D Wave program. Selected global
statistics for snapshot number 4 taken
at 0.01 seconds 189

1-D Wave program. Selected global
statistics for snapshot number 12 taken
at 0.03 seconds 190

1-D Wave program. Selected global
statistics for snapshot number 23 taken
at 0.052 seconds 191

1-D Wave program. Selected global
statistics for snapshot number 36 taken
at 0.09 seconds 192

1-D Wave program. Selected local
statistics for Processor 0, (x,y) = (0,0) 193

1-D Wave program. Selected local
statistics for Processor 100, (x,y) = (7,4) 194

www.manaraa.com

Figure 1.1.

Figure 1.2.

Figure 2.1.

Figure 3.1.

Figure 5.1.

Figure 6.1.

Figure 6.2.

Figure 6.3.

Figure 6.4.

Figure 6.5.

Figure 6.6.

Figure 6.7.

Figure 6.8.

Figure 6.9.

vi

LIST OF FIGURES

Page

A classification of computer systems based
on the organization of data and control 4

A distributed memory concurrent computer 6

A systems approach to solving problems
concurrently 20

Three perspectives on system performance:
program, architecture, and machine 47

Two geometric graphs, in template form,
for presenting performance data from a
machine perspective: a dot plot and a
cell plot 96

Event-driven simulation and generation of
event records 103

Post-processing of an event trace 106

Graphical interface of the visual
analysis tool 108

Mapping a three-dimensional (eight-node)
hypercube onto a two-dimensional grid
(gray code mapping) 113

Assignment of processor addresses for an
eight-dimensional (256-node) hypercube to
locations in a two-dimensional (16x16)
grid (gray code mapping) 114

Basic operation of Broadcast on an eight-
node hypercube 117

Picture of performance (dither plot):
Broadcast, ss#2 at 0.9 msec., cumulative
traffic (bytes) 126

Picture of performance (dither plot):
Broadcast, ss#3 at 1.8 msec., cumulative
traffic (bytes) 127

Picture of performance (dither plot):
Broadcast, ss#4 at 3.6 msec., cumulative
traffic (bytes) 128

www.manaraa.com

vii

Figure 6.10. Picture of performance (dither plot);
Broadcast, ss#5 at 5.4 msec., cumulative
traffic (bytes) 129

Figure 6.11. Picture of performance (dither plot);
Broadcast, ss#6 at 7.2 msec., cumulative
traffic (bytes) 130

Figure 6.12. Picture of performance (dither plot);
Broadcast, ss#7 at 9 msec., cumulative
traffic (bytes) 131

Figure 6.13. Picture of performance (dither plot);
Broadcast, ss#8 at 10.8 msec., cumulative
traffic (bytes) 132

Figure 6.14. Picture of performance (dither plot):
Broadcast, ss#9 at 12.6 msec., cumulative
traffic (bytes) 133

Figure 6.15. Picture of performance (dither plot);
Broadcast, ss#10 at 14.4 msec., cumulative
traffic (bytes) 134

Figure 6.16. Picture of performance (dither plot);
Broadcast, ss#ll at 16.2 msec., cumulative
traffic (bytes) 135

Figure 6.17. Picture of performance (dither plot);
Broadcast, ss#12 at 18 msec., cumulative
traffic (bytes) 136

Figure 6.18. Picture of performance (3D plot);
Broadcast, ss#10 at 14.4 msec., cumulative
traffic (bytes) 138

Figure 6.19. Picture of performance (dither plot);
Broadcast, ss#10 at 14.4 msec., cumulative
communication time 139

Figure 6.20. Picture of performance (dither plot);
Broadcast, ss#10 at 14.4 msec., cumulative
wait time 140

Figure 6.21. Picture of performance (dither plot);
Broadcast, ss#10 at 14.4 msec., processor
activity (black: computing; gray:
communicating; white: none) 141

Figure 6.22. Basic operation of Collect on an eight-node
hypercube 142

www.manaraa.com

viii

Figure 6.23.

Figure 6.24.

Figure 6.25.

Figure 6.26.

Figure 6.27.

Figure 6.28.

Figure 6.29.

Figure 6.30.

Figure 6.31.

Figure 6.32.

Figure 6.33.

Figure 6.34.

Figure 6.35.

Picture of performance (dither plot);
Collect, ss#2 at 0.35 msec., cumulative
traffic (bytes) 148

Picture of performance (dither plot):
Collect, ss#8 at 3.15 msec., cumulative
traffic (bytes) 149

Picture of performance (3D plot):
Collect, ss#8 at 3.15 msec., cumulative
traffic (bytes) 150

Picture of performance (dither plot):
Collect, ss#8 at 3.15 msec., cumulative
communication time 151

Picture of performance (dither plot):
Collect, ss#8 at 3.15 msec., cumulative
wait time 152

Picture of performance (dither plot):
Collect, ss#8 at 3.15 msec., processor
activity (black: computing; gray:
communicating; white; none) 153

Picture of performance (dither plot):
Collect, ss#15 at 16.8 msec., cumulative
traffic (bytes) 154

Basic operation of Shift on an eight-node
hypercube 156

Picture of performance (dither plot):
Shift, ss#4 at 0.7 msec., cumulative
wait time 157

Picture of performance (dither plot):
Shift, ss#12 at 4.2 msec., processor
activity (black: computing; gray:
communicating; white; none) 158

Picture of performance (dither plot):
Shift, ss#12 at 4.2 msec., cumulative
communication time 159

Picture of performance (dither plot);
Shift, ss#12 at 4.2 msec., cumulative
wait time 160

Basic operation of Quicksort on an eight-
node hypercube 162

www.manaraa.com

ix

Figure 6.36.

Figure 6.37.

Figure 6.38.

Figure 6.39.

Figure 6.40.

Figure 6.41.

Figure 6.42.

Figure 6.43.

Figure 6.44.

Figure 6.45.

Figure 6.46.

Figure 6.47.

Picture of performance (dither plot):
Quicksort, ss#lO at 22.7 msec., cumulative
work (operations) 170

Picture of performance (dither plot):
Quicksort, ss#10 at 22.7 msec., cumulative
computation time 171

Picture of performance (dither plot):
Quicksort, ss#10 at 22.7 msec., cumulative
communication time 172

Picture of performance (dither plot):
Quicksort, ss#10 at 22.7 msec., processor
activity (black: computing; gray:
communicating; white; none) 173

Picture of performance (dot plot):
Quicksort, at 23 msec., cumulative
activity 174

Picture of performance (dot plot);
Quicksort, at 23 msec., instantaneous
activity 175

Picture of performance (dither plot):
Quicksort, sb#15 at 27.9 msec., cumulative
work (operations) 176

Picture of performance (3D plot):
Quicksort, ss#15 at 27.9 msec., cumulative
work (operations) 177

Picture of performance (dither plot):
Quicksort, ss#15 at 27.9 msec., cumulative
computation time 178

Picture of performance (dither plot):
Quicksort, ss#l5 at 27.9 msec., cumulative
communication time 179

Picture of performance (dither plot):
Quicksort, ss#l5 at 27.9 msec., processor
activity (black; computing; gray;
communicating; white: none) 180

Picture of performance (dot plot):
Quicksort, at 28 msec., cumulative
activity 181

www.manaraa.com

X

Figure 6.48.

Figure 6.49.

Figure 6.50.

Figure 6.51.

Figure 6.52.

Figure 6.53.

Figure 6.54.

Figure 6.55.

Figure 6.56.

Figure 6.57.

Figure 6.58.

Figure 6.59.

Picture of performance (dot plot);
Quicksort, at 28 msec., instantaneous
activity

Event space-time profile: Quicksort.
Time: 0 - 31 msec.. Addresses: 0—25 Time: 0-31 msec.. Addresses:

event
255,

Event space-time profile; Quicksort.
Time: 0-31 msec.. Addresses; 0 - 255,
X : activity event

Event space-time profile; Quicksort.
Time; 0-31 msec.. Addresses; 0 - 255,
X : compute event

Event space-time profile; Quicksort.
Time; 0-31 msec.. Addresses; 0 - 255,
X ; send event

Event space-time profile: Quicksort.
Time: 0-31 msec., Addresses : 0 - 255,
X : receive event

Picture of performance (dither plot):
ID Wave, ss#4 at 10 msec., processor
activity (black; computing; gray;
communicating; white; none)

Picture of performance (dither plot);
ID Wave, ss#4 at 10 msec., cumulative
communication time

Picture of performance (dither plot);
ID Wave, ss#12 at 30 msec., processor
activity (black: computing; gray:
communicating; white: none)

Picture of performance (dither plot):
ID Wave, ss#12 at 30 msec., cumulative
computation time

Picture of performance (dither plot):
ID Wave, ss#12 at 30 msec., cumulative
communication time

Picture of performance (dither plot):
ID Wave, ss#23 at 52 msec., processor
activity (black; computing; gray;
communicating; white; none)

182

183

184

185

186

187

195

196

198

199

200

201

www.manaraa.com

xi

Figure 6.60. Picture of performance (dither plot):
ID Wave, ss#23 at 52 msec., cumulative
computation time

Figure 6.61.

Figure 6.62,

Figure 6.63

Picture of performance (dither plot):
ID Wave, ss#23 at 52 msec., cumulative
communication time

Picture of performance (dither plot):
ID Wave, ss#36 at 90 msec., cumulative
computation time

Picture of performance (dither plot):
ID Wave, ss#36 at 90 msec., cumulative
communication time

202

203

204

205

www.manaraa.com

1

CHAPTER I.

INTRODUCTION

However, if I had waited long enough I probably would never
have written anything at all since there is a tendency when
you really begin to learn something about a thing not to want
to write about it but rather to keep on learning about it
always and at no time, unless you are very egotistical, which,
of course, accounts for many books, will you be able to say:
now I know all about this and will write about it. Certainly
I do not say that now; every year I know there is more to
learn, but I know some things which may be interesting now ...
and I might as well write what I know about them now.

Ernest Hemingway, from Death in the Afternoon

Many basic ideas and problems concerning computers and

programming have been around since the 1820s and 1830s when

Charles Babbage designed his Analytical Engine and one of his

colleagues. Lady Lovelace (born Ada Augusta Byron), developed

her own programming language. The Analytical Engine and other

early mechanical computing machines evolved into the

electronic digital computers that were first introduced in the

1930s and became the basis for present computers. Throughout

this history and especially over the past fifty years, cost

and performance have been important design issues. For a

fixed cost, the designer typically wants the fastest machine

possible. There are several means of achieving this end,

including choosing a simple organization with very fast parts

or a more complex organization with slower parts [Kuck, 1978].

The first choice, using fast parts, has met with success

so far. The dramatic progress in microelectronics over the

www.manaraa.com

2

past twenty-five years has led to faster device technologies

and yielded rapid growth in computer performance. However,

the three basic functions of switching, storage, and

communication that are required in computing systems are

beginning to approach fundamental physical limits [Seitz and

Matisoo, 1984]. Thus, the second choice, using many slower

parts, is becoming more important. This chapter discusses

some implications of that choice.

Concurrent Computation

How can a complex organization with many slow parts, or

processors, result in a fast machine? It is not simply that

computers with more parts should be able to solve larger

problems in less time. Rather, it depends on the nature of

the parts and how we structure and control the parts.

Using many slow parts is the premise of parallel or

concurrent computing. A spectrum of designs identifies the

possibilities for exploiting the parallelism or concurrency

among the many parts. Though many spectrums can be defined

based on different criteria, two are mentioned here and will

be referenced in later chapters. Within one spectrum, there

are three regions based on the number and complexity of the

processors. At one extreme are simple, bit-serial processors.

Although any one of these processors is of little value by

itself, the aggregate computing power can be large when many

are coupled together. This approach can be likened to a large

colony of termites devouring a log. At the opposite extreme

are machines that use a small number of powerful processors.

Each processor is based on sophisticated pipelining and is

www.manaraa.com

3

built using the fastest available circuit technology.

Continuing our analogy, this approach is similar to a few

woodsmen with chain saws. The third, intermediate approach

combines a large number of microprocessors. This is analogous

to a small army of hungry beavers [Reed and Fujimoto, 1987].

The third approach, as discussed below, is most relevant to

later chapters.

Within another spectrum, there are four classes based on

the organization of data and the organization of control (or

instruction execution). In a centralized organization, data

or control resides in only one part of the computer; data in

a shared memory and control in a designated processor. In a

distributed organization, data or control is local to each

part; data in a local memory and control in each processor.

Figure 1.1 illustrates the four possible combinations. Note

that centralized data refers to the shared memory model, and

distributed data, the message passing (or distributed memory)

model. Also, centralized control refers to synchronous (or

lockstep) execution, and distributed control, asynchronous

execution. The four classes consist of the following

organizations: (l) centralized control and centralized data;

(2) centralized control and distributed data; (3) distributed

control and centralized data; and (4) distributed control and

distributed data. This is roughly similar to Flynn's

classification based on instruction streams and data streams,

corresponding, respectively, to SISD, SIMD, MISD, and MIMD

[Flynn, 1966]. The fourth class, as discussed below, is most

relevant to later chapters.

www.manaraa.com

4

CONTROL

• • • Distributed

Centralized

DATA

Centralized

Complex Simple Memory
R'ocessor R'ocessor Module

Distributed

R-ocessor

• o
(coarse-
grain)

(line-
grain)

Figure 1.1. A classification of computer systems based on the
organization of data and control

www.manaraa.com

5

A note on terminology may be helpful at this point. The

terms "concurrent" and "parallel" are often used

interchangeably in the literature. Although a particular

usage of the terms is evolving, there is no generally accepted

distinction between the two terms. In a general context, we

may interpret them to have the same meaning: a computer

system is a concurrent or parallel one if it has more than one

processing element, the processing elements are

interconnected, and a collection of processing elements work

together to solve a problem. However, the term "concurrent"

sometimes denotes a computer system with more or less

autonomous processing elements each having its own local

memory and communicating via message passing. This is in

contrast to systems with processing elements that operate in

lockstep or that communicate using shared memory. Given this

distinction, the term "concurrent" is more appropriate for our

purposes. Thus, though we occasionally use both terms,

parallel should be interpreted more generally and concurrent,

more specifically.

A concurrent computer involves the collective and

simultaneous interaction of many parts engaged in computation

and communication activities. Figure 1.2 illustrates a

computer system representative of the class of distributed

memory concurrent computers. Coordination and cooperation are

critical. Concurrent architectures and algorithms are the key

to efficiently orchestrating the activities. The objective is

to organize the interactions among the parts so that

computations are performed concurrently and communication

occurs locally within the concurrent computer. We will focus

on a family of concurrent computers called multicomputers.

www.manaraa.com

Figure 1.2. A distributed memory concurrent computer

www.manaraa.com

7

Multicomputers consist of a large number^ possibly

hundreds or thousands, of nodes connected in some fixed

topology or network. The nodes asynchronously cooperate via

message passing to execute the tasks of parallel programs.

Each network node, fabricated as a small number of VLSI (very

large scale integration) chips, contains a processor, a local

memory, a communication controller capable of routing messages

without delaying the processor, and a small number of direct

connections to other nodes. Specialized co-processors for

floating-point, graphics, or secondary storage operations may

also be included on a node. An important feature is that a

multicomputer can be implemented using simple building blocks

for the computation and communication components of a node

[Reed and Fujimoto, 1987].

Application programs must be decomposed into concurrently

executing tasks. The tasks may be small, medium, or large in

size, and the multicomputer is termed a fine-grain, medium-

grain, or large-grain (also coarse-grain) machine,

respectively. Task size (for a program) may be measured as

the amount of computation between task interactions, and grain

size (for a multicomputer) loosely describes the node size or

complexity. There are implementations of programming

languages, models of computation, and architectures

corresponding to each size. For example, the Actors model of

concurrent computation [Agha, 1986] has been applied to both

fine-grain and medium-grain configurations via the Concurrent

Smalltalk [Dally, 1987] and the Cantor [Athas and Seitz, 1988]

programming environments, respectively. The Large-Grain Data

Flow (LGDF) model [Babb and DiNucci, 1987] has been applied to

large-grain configurations, including the conventional

www.manaraa.com

8

environment of Fortran on the Cray X/MP.

The idea of multicomputers is not new. Arthur Burks, an

early pioneer in computing and colleague of John von Neumann,

has suggested an architecture called "programmable computer

structures;" a typical cell would hold a tiny computer which

would store, process, and/or communicate information; and

which would also control its own activities and regulate the

passage of information through its own territory [Burks,

1981]. However, the interest in multicomputers has recently

grown because improvements in technology have made them viable

alternatives to other high performance computer systems. VLSI

technology, namely powerful microprocessors and inexpensive

memory, makes it both technically and economically feasible to

construct multicomputers with many computing nodes. Although

multicomputers have been the subject of numerous research

projects since the 1970s, the idea remained unexploited until

the construction and demonstration of the Cosmic Cube at

Caltech in 1983 [Seitz, 1985]. The Cosmic Cube consists of a

collection of nodes interconnected in a hypercube topology,

one member of the multicomputer family of topologies. The

computer system shown in Figure 1.2 is configured as a six-

dimensional (64-processor) binary hypercube. Within the

Cosmic Cube, each node includes a pair of Intel 8086/8087

processor chips, local memory, and a set of communication

links. Following the success of the Cosmic Cube, four

companies (namely, Intel, Ametek, Ncube, and Floating Point

Systems) began producing commercial multicomputers configured

as hypercubes.

www.manaraa.com

9

Motivation

A research project often has its roots in some

identifiable incident, observation, or thought. That origin

may become the motivation for defining, clarifying, and

attacking a problem. A chord is struck within the researcher

that signals that a challenge awaits, that something

interesting, exciting, and worthwhile needs investigating.

This project has its roots in a couple of pieces of technical

literature. In recollecting the origins, we choose to provide

excerpts rather than merely summarize relevant passages. The

ideas noted here were primary influences in this work, however

we should mention that these were just a starting point.

These ideas led to the discovery of many others, all of which

influenced the direction of this work. Admittedly, this work

could have taken several different directions depending on

which ideas were emphasized.

The initial motivation for this work stems from a chapter

in The Connection Machine, a book by Daniel Hillis, entitled

"New Computer Architectures and Their Relationship to Physics

or. Why Computer Science is No Good" (which was reprinted from

[Hillis, 1982]). Hillis says that "there is beginning to be a

forest to see through the trees." The phrase refers to the

notion that computer systems are becoming large enough to

exhibit the kind of simple, continuous behavior that we are

accustomed to in physics, large enough that the behavior of

the system can no longer be dominated by the behavior of any

single component [Hillis, 1985]. Despite offering merely

interesting insights, this chapter seems to open the door to a

world of discovery, especially in the area of perceiving.

www.manaraa.com

10

viewing, and understanding large computer systems.

Ivan Sutherland and Carver Mead also explore the

relationship between computers and computer science in

[Sutherland and Mead, 1977]. Excerpts from this paper

include:

Computer science has grown up in an era of computer
technologies in which wires were cheap and switching
elements were expensive. Integrated circuit technology
reverses the cost situation As we leam to
understand the changed relative costs of logic and wiring
and to take advantage of the possibilities inherent in
large-scale integration we can expect a real revolution
in computation, not only in the forms of computing
machines but also in the theories on which their design
and use are founded. ... Computer science as it is
practiced today is based almost entirely on mathematical
reasoning. It is concerned with the logical operations
that take place in computing devices. It touches only
lightly on the necessity to distribute logic devices in
space, a necessity that forces one to provide
communication paths between them. Computer science as it
is practiced today has little to say about how the
physical limitations to such communications bound the
complexity of the computing tasks a physically realizable
computer can accomplish. [Sutherland and Mead, 1977]

The paper proceeds to discuss the effects of

communication, the importance of regularity in computing

structures, the advent of distributed memory concurrent

computers, and the goal of matching the complexities of

problems to the simple patterns of communication in actual

machines. Several later remarks summarize their thoughts:

The challenge in designing or using a parallel processor
... lies in discovering ways in which simple patterns of
communication within the processor can be made to match
the communication tasks inherent in the problem being
solved. ... We believe that just as an important part of
today's computer science concerns itself with sequences
of instructions in time, so an important aspect of
computer science in the future will be the study of sets
of communications distributed in space. [Sutherland and
Mead, 1977]

www.manaraa.com

11

Both of these treatises emphasize that computation and

communication activities occur in time and space within the

machine and that we need to start thinking about computing,

especially large-scale parallel computing, with that in mind

if we are to realize the potential power of future computer

systems. These are challenging and stimulating ideas, and

they are a premise for much of the work described in the

chapters that follow. To facilitate thinking about the

temporal and spatial behavior of parallel computation, we feel

it is critical to have methods and tools that give us an

appropriate view of system performance. Thus, we sought to

create a performance "picture" that would illustrate program

behavior within the time and space domains of a concurrent

computer.

Complex Systems

Two concepts underlie the work described in this thesis.

One is complex systems, and the other is visualization. We

discuss complex systems in this section and then turn to

visualization in the next section. However, we refer to the

concepts again in later chapters, since both are common

threads running throughout this work.

Complex systems come in many forms, including a colony of

ants, a hive of bees, a society of people, a cluster of stars,

the brain and its neurons, a chip with transistors, and a

spreadsheet of cells, to name a few ([Fox et al., 1988] gives

a longer, more detailed list). Each of these systems is

characterized by a large collection of entities or members

that are connected in some way. Because a concurrent computer

www.manaraa.com

12

involves the collective and simultaneous interaction of many

elements engaged in computation and communication activities

across a network, it also is a complex system. The behavior

and properties of other complex systems may enhance our

understanding of concurrent computer systems. Several

researchers have studied the relationship between complex

systems and concurrent computers, and their writings include

[Fox et al., 1988], [Kleinrock, 1985], [Wolfram, 1984],

[Gelernter, 1987], and [Snodgrass, 1988]. We mention some

contributions here and will refer to others in later chapters

as well.

Gelernter compares honeybees and processes. He writes

that like the bees maintaining a hive — individually feeble

agents working in concert — a parallel program can bring

large amounts of computing power to bear on a problem by

establishing multiple processes or loci of activity. The bees

coordinate their activities through visual and chemical

signals; similarly, processes in a parallel program must

communicate to work together. This example and others

describe loosely-coupled systems that achieve a common goal

with distributed control. Stated another way, each is a

system in which loosely-coupled, self-organizing automatons

demonstrate expedient behavior [Kleinrock, 1985].

We can identify several general parameters and properties

of complex systems. These include:

size
structure (or topology)
dimension
granularity
pattern of communication
balance
hierarchy of levels
self-similarity (or scale invariance)

www.manaraa.com

13

Size is the number of members in the system. If the

system is extensible, then it can start at a given size and

later be expanded to a larger size without adversely, or

unreasonably, affecting the performance of the system.

Structure is the connectivity (that is, nature of the

connections) among the members. Topology can be static or

dynamic over the life of the system. A dynamic structure is

sometimes termed configurable (or reconfigurable). Dimension

is the number of connections from a member to its neighboring

members. Granularity reflects the amount of work to be done

by a member. This can be a fixed or changing amount as the

system progresses through time. Pattern of communication

describes the spatial interaction among members. This may

depend on the activities of the members and thus changes over

time. Balance refers to a good, orderly mix of work and

communication by all members. This is important to the

performance of the system. A hierarchy of levels and

self-similarity among levels means that members can be

organized into, say, classes, and that the process by which

work is done is more or less the same regardless of the level

at which it happens. Only the scale is different. Hierarchy

is useful to reduce the apparent complexity of a system since

it supports selectively hiding or exposing the detailed

workings of a system's members.

A fascinating account of complex systems is given in

[Gleick, 1987]. In his book, James Gleick chronicles a set of

beliefs about complexity that was once shared by scientists

and an alternative set of ideas that is gaining acceptance.

Three early beliefs were; (1) simple systems behave in simple

ways; (2) complex behavior implies complex causes; and (3)

www.manaraa.com

14

different systems behave differently. However, over the past

twenty years, ideas have changed: (1) simple systems give

rise to complex behavior; (2) complex systems give rise to

simple behavior; and (3) the laws of complexity hold

universally, regardless of the details of a system's

constituent parts. So, understanding complexity in one system

may lend insight into understanding complexity in another

system. Also, there is reason to believe that simplicity

exists at some level in the system.

Visualization

Visualization is an area of computer graphics that

consists of techniques and tools that allow data to be

observed and manipulated in a geometrical, rather than

numerical or textual, format. The visualization field can be

divided into three broad areas:

(1) visualization in scientific computing (ViSC),

(2) visual programming, and

(3) program visualization.

Visualization in scientific computing is the visualization of

application program results (or output data). It refers to

the animation of data such as that produced by supercomputer

simulations, satellites, and measuring devices used in

astronomy, meteorology, geology, and medicine. Visual

programming, or graphical programming, is the specification of

programs in a notation using two or more dimensions, as by

flowcharts, graphs, diagrams, or icons (see [Shu, 1988]).

Program visualization, also called algorithm animation, uses

images to represent some aspect of a program's execution. The

www.manaraa.com

15

work described in this paper falls predominantly in this

latter area.

In general, the utility of visualization in scientific,

engineering, and business applications is based on the ability

of the human eye/brain combination to perceive and comprehend

visual images orders of magnitude faster than numbers (or

text) only. By using a computer to visualize data, we can

absorb huge amounts of information. For instance, in a three-

dimensional color representation on a higher-resolution

graphics display, one displayed image can represent as many as

ten million numbers. This global picture of the data gives

researchers the ability to see simultaneously all of the

information that otherwise might have to be printed on reams

of paper. It allows researchers to discover relationships and

invariants in collections of data. An important feature of

many visualization systems is color, where typically the

largest data values are represented by red and the smallest by

blue. Color-coded data are useful to identify patterns and

anomalies. Two additional important features include (1)

interaction, exploring and manipulating the data during

presentation, and (2) animation, displaying a series of images

that illustrate relationships over time.

Graphics software tools that directly generate two- and

three-dimensional pictures representing tables of data are

becoming increasingly available, both commercially and in the

public domain. Examples include MacSpin, DataScope, and

Image, described in [Peltz, 1989] and [Schuster, 1989]. We

discuss these tools and their relation to our work in Chapter

VI. The tables of data to be analyzed by graphics tools can

describe the behavior or state of any complex system. If the

www.manaraa.com

16

system under study is a concurrent computer, then data

collected to measure its performance (often thousands to

millions of bytes) may be compiled into a tabular format.

These tables can be transformed into pictures that offer

insights into the development of algorithms, architectures,

and machines.

Scope of this Work

The primary purpose of this work is to answer the

following question with respect to Figure 1.2: How can we

evaluate program performance on this computer system? The

basis for our answer has its origins in the two concepts,

complex systems and visualization, and in the application of

these concepts to studying multicomputer systems. Of the many

possible paths of study, three are pursued to varying extents;

(1) monitoring, or measuring, program performance (i.e., data

collection), (2) visualization of program performance (i.e.,

data presentation), and (3) development of performance models.

In answer to the stated question, we present a unique

graphical approach to performance measurement of (possibly

large) concurrent computer systems. Our approach attempts to

present a performance "picture" that will offer insight into

the development of concurrent algorithms, architectures, and

machines. The key elements of the approach are listed.

(1) Observe and measure performance via instrumented

execution of programs.

(2) Analyze and reduce performance data via appropriate

techniques.

(3) Calculate aggregate measures of system behavior.

www.manaraa.com

17

(4) Visually display program performance via a computer

graphics format that illustrates computation and

communication activities in time and space within the

machine.

Chapter I has provided background and introductory

information to establish a context for the remaining chapters.

Chapter II describes related work in two areas: performance

analysis tools and mapping algorithms onto architectures to

achieve optimal performance. Chapter III discusses program

monitoring (via instrumentation) as a method of performance

evaluation, examines critical issues in measuring performance

on concurrent computer systems, and presents perspectives for

observing system performance. Chapter IV discusses several

formats for presenting performance data and the

appropriateness of particular formats for representing the

performance of particular computer systems. Chapter V

presents our approach to representing program performance,

including a description of the method, definitions of measured

parameters and calculated statistics, and specifications of

the graphical formats. Chapter VI describes a prototype

implementation of the approach and presents simulation results

from several case studies. Finally, Chapter Vll discusses yet

unresolved issues relating to system dimension, outlines

future work, and presents the contributions of this work.

www.manaraa.com

18

CHAPTER II.

BELATED WORK

In the preceding chapter, some of the work being done in

related areas has already been introduced. In this chapter,

we review work being done in two other areas: the mapping

problem and performance analysis tools. A discussion of the

mapping problem is included because of its importance to the

performance of concurrent computers and because of the

potential contribution of this work toward solving the mapping

problem. The majority of this chapter pertains to the latter

area, performance analysis tools, and tools that implement

visualization techniques are highlighted.

The Mapping Problem

A systems approach for developing effective concurrent

computers emphasizes matching an algorithm, or class of

algorithms, with an architecture. The essential points in

such a design paradigm include: identifying parallel

applications, developing concurrent algorithms, defining

concurrent models of computation, specifying expressive

concurrent programming languages, creating a concurrent

architecture, developing efficient operating system and

support software, and constructing an effective concurrent

computer. These activities are illustrated in Figure 2.1.

There should be a good match between each pair of levels, as

www.manaraa.com

19

indicated by the adjoining arcs. Additionally, two objectives

of this design process are expressiveness and efficiency.

Expressiveness refers to the ease with which a program can be

understood, and efficiency, the ease with which the actions

implied in a program can be executed by the computer.

Informally, the mapping problem involves devising a good match

between levels to achieve optimal system performance.

One way to express the mapping problem is in terms of

complex systems [Fox et al., 1988]. Concurrent computing can

be viewed as a mapping between one complex system, the

computer, and another complex system, the problem. An aim is

to determine which complex computers are best applied to the

various classes of complex problems. Fox suggests that we

find general results of the form: "Complex computers with

system parameters and properties of such and such values can

be used to compute problems with this and that values for its

respective defining parameters." Two fundamental hardware

parameters for concurrent computers are the time to

communicate a number between two nodes and the time to perform

a calculation. Informally, the communication overhead

reflects the amount of time a node spends conversing with its

neighbors instead of doing productive work on its own. It is

a function of the ratio of communication and calculation times

and represents the fraction of the total run time spent on

communication. A small ratio implies a better fit between

problem and computer and is needed for good performance of a

concurrent computer and algorithm. A similar analysis in

terms of overhead incurred per unit of computation is

presented by Stone [Stone, 1987]. Performance is shown to

depend on the length of a runtime quantum relative to the

www.manaraa.com

R-ogramming
Language

Operating
ŝtem

ARCHITECTURE COMPUTER APPLICATION
(PROBLEM)

MODEL OF
COMPUTATION

ALGORITHMS

to
o

Expressfvmess Effldency

Figure 2.1. A systems approach to solving problems
concurrently

www.manaraa.com

21

length of communications overhead produced by that quantum.

In each case, the ratio is used to balance concurrency and

communication and thus achieve optimum performance. Seeking a

balance between concurrency and communication is an approach

to solving the mapping problem.

A graph-theoretic treatment of the mapping problem is

given by Bokhari [Bokhari, 1987]. He calls it the assignment

problem and defines a central problem and a variant. The

central problem is that of assigning the modules of a program

to the processors of a multicomputer. A module may contain

either code or data and may communicate with other modules.

The objective is to find an assignment that minimizes the

total cost of executing the program. A variant of the central

problem occurs when all processors execute the same program,

but on different portions of a large domain, or data set. In

this case, the domain is partitioned and each subdomain is

assigned to a separate processor. So the first problem is

that of assigning the nodes of a computation graph over the

nodes of a given multicomputer system in order to minimize

communication overhead. The second problem is that of

partitioning the domain over the processors of a multicomputer

system so that each processor has nearly the same

computational load allocated to it.

A software system called Prep-P is being developed as a

tool to help automate a solution to the mapping problem for

multicomputers [Berman, 1987]. The problem is viewed in a

context similar to that described by Bokhari (above), and it

involves making an assignment of processes to processors.

Prep-P is targeted at machines based on either a fixed or

configurable communication network between processors and the

www.manaraa.com

22

computation is modeled as a network of communicating

processes. The topology of the process communication graph

may not be a natural subgraph of the topology of the processor

interconnection graph or, more commonly, the process

communication graph may be much larger. The Prep-P system

implements a particular mapping strategy that starts with a

graph description of the algorithm and finishes with code that

executes the algorithm on a parallel architecture simulator

(the Poker simulator, described in the next section).

In most, if not all, formulations of the mapping problem,

we can define metrics to evaluate, or measure, the quality of

the mapping based on certain parameters of the system. Of

course, we can define many types of metrics, as we will see in

later chapters. To calculate the metrics, a mechanism is

needed to extract values for the parameters of Interest

relating to system performance. This need has resulted in the

development of numerous performance analysis tools.

Performance Analysis Tools

A number of projects have investigated, at least in part,

the problem of representing parallel program performance.

These projects have contributed to the general knowledge on

multicomputers and analysis tools. This project has matured

because of their contributions. Several projects have

provided information about actual concurrent computer systems,

which we are currently lacking. Two of these projects,

Seecube and Hypervlew, are discussed first. These are closely

related to our work and were studied in depth. We then

discuss PARET, PAW, Poker, B-Hive, PIE, Balsa, IPPM, PM,

www.manaraa.com

23

LTRAMS, and Victor. Note that the names used may denote the

project, the tool, or both. The projects are at various

stages of development. A few were initiated only within the

last couple of years, and none existed a decade ago. At the

present time, there is a rapidly growing interest in tools to

support performance analysis of multicomputers. Tools that

use visualization techniques to represent program performance

are especially relevant and are highlighted here.

Seecube, one of the first tools of its kind, allows the

programmer of a hypercube computer, originally the Intel iPSC

computer and currently the NCUBE computer, to visualize

communications within a parallel program [Couch, 1988]. It

uses post-processing of records of local events from each

processor to reconstruct the global state of the computer at

any time during a computation. There are several graphical

representations of the state data, including; 3-cubes in

space, 3-d Karnaugh map, linear plot, log butterfly plot,

ordered circle, gray code circle, and Pascal triangle. These

representations are different ways to organize n-dimensional

plots in a plane, and they support up to about six dimensions

(or sixty-four processors). There are three parts within

Seecube: the Data Collector, the Resolver, and the Sequencer.

The Data Collector is implemented as a library of

communication routines on the hypercube that invisibly (as far

as possible) store diagnostic event traces in local memory on

each processor. At the end of computation, these traces are

collected from each hypercube node processor and stored on the

host processor. The Resolver cross-references these traces by

matching sends with corresponding receives and sorts the

traces into a single global trace for the entire hypercube.

www.manaraa.com

24

Then the Sequencer graphically and dynamically displays the

results of the Resolver.

Seecube is now part of a larger tool called Triplex, a

collection of software tools which aid the programmer in

implementing algorithms on the NCUBE multiprocessor. The

tools address the problem of understanding the behavior of

parallel programs in terms of both correctness and

performance. Triplex has three components; the Simplex

operating system for the NCUBE, the Commplex networking

package for communication with the NCUBE from Sun

workstations, and the Seeplex color graphics program for

viewing depictions of program execution. Simplex supports the

development of tools for real-time and offline debugging and

performance monitoring. When Simplex is loaded, it

synchronizes the local clocks on all nodes and maintains this

synchrony. It provides out-of-band transmission (higher

priority and reliability than other data transmissions) of

system monitoring data of two kinds: (l) summary statistics,

which summarize computational conditions at each instant in

time, and (2) event statistics, which record histories of

significant events.

An event happens locally within a processing node. The

interaction of an outside monitor program (such as Seeplex)

and the event statistics software embedded in Simplex involves

two activities; (1) the selection of "collection points" to

be enabled, and (2) the sending out of the stored "notes" upon

request. The outside monitor program interacts with Simplex*s

logging capabilities through "parameters". A parameter

corresponds to a set of collection points that are enabled as

a group. Summary statistics are collected continuously and

www.manaraa.com

25

reported only upon request. The interaction of the outside

monitor program and the summary statistics monitor embedded in

Simplex involves two activities: (1) initiation of reporting,

including selection of parameters to be collected (done once

only) and (2) polling for data (done repeatedly). More

details are available in [Krumme et al., 1989], [Krumme,

1989], and [Couch, 1989].

Tapestry is a project at the University of Illinois (at

Urbana-Champaign) that provides an experimental environment

where different computer architectures can be matched to the

computation requirements of an application's constituent

algorithms [Campbell and Reed, 1988]. The research includes

performance measurement, evaluation, and visualization. A

collection of performance visualization tools called HyperView

supports dynamic performance displays for viewing event

traces. Included in the set of display views are: dials, bar

charts, LEDs, Kiviat diagrams, matrix views, and general

graphs. The inclusion of visualization tools is based on

reasoning that is nearly identical to the motivation for much

of the work described in this thesis:

Parallel computer systems are among the most complex of
[our] creations, making satisfactory performance
characterization difficult. Despite this complexity,
there is a strong tendency to quantify parallel system
performance using a single metric. A complete
characterization requires both static and dynamic
characterizations. Static or average behavior analysis
may mask transients that dramatically alter system
performance. The importance of dynamic, visual
scientific data presentation has only recently been
recognized. Large, complex parallel systems pose equally
vexing performance interpretation problems. Data from
hardware and software performance monitors must be
presented in ways that emphasize important events while
suppressing irrelevant details. [Campbell and Reed, 1988]

www.manaraa.com

26

Hyperview dynamically displays architectural and system

activity via numerous system views. Detailed performance

measurements also are provided via standard statistical

displays. It was inspired by Seecube, and many displays were

borrowed from Seecube. Whereas Seecube was built for the

SunView window environment, Hyperview is based on the X window

environment. Hyperview contains three cooperating modules:

(1) data capture, (2) state analysis, and (3) visualization.

A hardware monitor for the iPSC/2 hypercube is integrated with

the performance visualization system (recall, Seecube uses a

software monitor for the NCUBE). Tapestry researchers feel

that the hardware support is crucial to the capture of

detailed performance data. More information is available in

[Rudolph and Reed, 1989], [Malony, 1989], and [Reed, 1989].

PARET is the Parallel Architecture Research and

Evaluation Tool [Nichols and Edmark, 1988]. It is a software

package that provides a multicomputer system laboratory for

studying: (1) the interaction of algorithms and

architectures; (2) the effects of varying physical resources

on system performance; and (3) alternate mapping, scheduling,

and routing strategies, both static and dynamic. Through

simulation, users exercise multicomputer models and study

performance in an interactive and animated environment.

Algorithms and architectures are displayed as directed flow

graphs. It also provides both runtime and summary statistics.

PAW is the Performance Analysis Workstation for queueing

networks [Melamed and Morris, 1985]. The network is animated

during simulation, and the user can control simulation

parameters. A simple graphical representation of a network of

arbitrary topology shows message passing by moving symbols

www.manaraa.com

27

from one box to another on a graphical display.

The Poker system was originally planned to emulate a very

specific architecture, CHiP (the Configurable Highly Parallel

Computer) [Snyder, 1982], although it has been extended to the

Cosmic Cube [Snyder 1984]. Poker has separate windows that

allow the user to focus on different multicomputer functions

such as setting the switches to create a particular

interconnection, assigning processes to processors, and

writing the code for a particular process. Though it is not

directly related to performance analysis, it provides a good

view of the multicomputer.

The B-Hive project measures static properties of

processor interconnections to select the best candidate

topologies to execute an application program [Agrawal et al.,

1986]. To select the best architecture for a particular

application and initiate a simulation of the execution, the

directed flow graphs representing parallel software are

allocated to undirected graphs representing the

interconnection. Simulation results are in summary form,

consisting mainly of execution times, average utilizations,

and average path measures.

PIE is the Programming and Instrumentation Environment

for parallel processing [Segall and Rudolph, 1985]. It is

specific to a particular shared memory system, but its

designers expect it to be translatable to other systems. It

supports the shared dataspace model of concurrent computation

and tuple-based programming languages such as Linda. PIE

provides an animated graphical representation of program

objects and their relationships. During execution, several

graphical displays show the status of the computation,

www.manaraa.com

28

including a dynamic invocation tree, which shows utilization

of processes and processors, and a bar graph, which shows

cumulative statistics.

IPPM, the Interactive Parallel Program Monitor, was

written as a debugging aid for the Intel iPSC [Brandis, 1986].

It monitors communication events on each processor by sending

event debugging messages to the host. The host filters the

events reported and stores an ordered event trace.

Simultaneously the event trace is graphically displayed on a

workstation.

Currently only for depicting sequential algorithms,

Balsa, the Brown University Algorithm Simulator and Animator,

creates an algorithm animation environment [Brown, 1988]. It

is one of the most advanced and widely recognized program

visualization tools. A user watches execution of an algorithm

through various views, using graphical displays to explore a

program in action. "Interesting events" play a key role in

the animation of an algorithm. Typically, a general plan for

visualizations of the algorithms is set forth, mainly to

identify the interesting events in the algorithm which should

lead to changes in the image being displayed. Then,

interesting event signals are added to the algorithm. The

intent of the research is to capture the entirety of an

algorithm in a single, static picture.

M is a parallel performance monitor that is one of the

support tools packaged with EXPRESS, a parallel operating

environment from Parasoft that runs on multicomputers such as

transputers, NCUBE, Caltech Mark III, and Intel iPSC [Flower,

1989]. PM provides information about the execution or

performance of a parallel program, including; communication

www.manaraa.com

29

times, routines being called, activity on each processor at

any point in a program, time spent in a routine, and so forth.

Specifically, three tools are available: (1) the execution

profiler, which monitors time spent in individual routines;

(2) the communications profiler, which monitors time spent in

communications and input/output; and (2) the event profiler,

which shows the interactions between processors and allows

user-specified events to be monitored.

The Victor project at IBM Research in Yorktown involves a

transputer-based mesh of processor nodes and special hardware

components associated with the nodes to support monitoring

performance [Wilcke, 1989]. A color-coded display screen

shows processor and link activity. Important issues being

studied via this project include space-sharing (versus

timesharing) and embedding logical topologies into physical

topologies.

LTRAMS, the Loosely-Coupled Trace Measurement System, is

an instrumentation tool being developed by the National

Institute of Standards and Technology (NIST) [Roberts, 1989].

The tool supports a distributed hybrid (hardware/software)

monitor measurement approach in which software triggers a

measurement (or sampling operation) and hardware collects and

stores the data. A global interrupt yields a snapshot of

system performance. Important issues being studied via this

project include grain size, perturbation or disruption effects

of the monitor, and VLSI implementations of the

instrumentation.

A project that has considerable merit but a slightly

different emphasis than the ones we have already reviewed is

underway at the University of North Carolina [Snodgrass,

www.manaraa.com

30

1988]. The focus of the project is that a historical

database, an extension of a conventional relational database,

provides an effective way to manage information processed by

the monitor of a complex system. The approach creates the

conceptual view that the dynamic behavior of the monitored

(subject) system is available as a collection of historical

relations, each associated with a sensor in the subject

system. It entails: specifying the low-level data

collection, specifying the analysis of the collected data,

performing the analysis, and displaying the results. The

eventual goal is to couple the relational model with a

suitable programming environment to form an integrated

instrumentation environment. Thus far, the approach has been

tested via two prototype implementations, one monitoring the

Cm* multiprocessor system [Swan et al., 1977] and a second

monitoring the Berkeley UNIX 4.2BSD operating system on a Sun

workstation. We will return to several of the details of

this project in the next chapter.

www.manaraa.com

31

CHAPTER III.

PERFORMANCE MONITORING

Far better never to think of investigating truth at all than
to do so without a method.

Rene Descartes

In Chapter II, several performance analysis tools are

highlighted. The objective in developing any analysis tool is

to use it to gain a better understanding of system performance

within some context. In fact, tools become a necessity in

order to properly investigate the basic principles associated

with the behavior of complex computer systems. Even though

each tool may use slightly different mechanisms to investigate

the principles, it is significant that the tools apply a

method to evaluate performance. An appropriate method and a

good implementation of the method can help convert a disparate

collection of results into a meaningful, coherent model. In

this chapter, we focus on monitoring as a method of evaluating

performance. Furthermore, this and the following chapter

present a framework that creates an integrated environment for

performance measurement and visualization.

Evaluation Methods

Performance measures can be obtained by applying the

following evaluation methods:

www.manaraa.com

32

• benchmarks
• monitoring (hardware or software)
• emulation
• simulation
• analytical modeling

For the projects reviewed in the preceding chapter, an

assortment of methods is applied. PARET, PAW, B-Hive, and

Balsa use simulation. Poker uses software emulation.

HyperView, Victor, and LTRAMS are coupled with hardware

monitors, while Seecube, IPPM, PM, PIE, and the relational

approach interact with software monitors. Benchmarks and

analytical modeling have been applied to multicomputers as

well [Reed and Grunwald, 1987]. Each method has advantages

and disadvantages when critiqued in areas such as accuracy,

complexity, and flexibility. Unfortunately, no method

achieves the best marks in all areas. So, we must choose a

method that satisfies our particular needs.

The choice of a method is driven by these factors; our

interest in studying the dynamic behavior of a complex

multicomputer system, and our preference for a scheme the lets

us capture the peculiarities of actual programs running on an

actual computer. Given these requirements, monitoring is the

method to be used. Though much has been written about

monitoring uniprocessor systems, how monitoring should be done

for multicomputer systems is under study. In the remainder of

this chapter, we summarize the present approaches to

monitoring multicomputer systems and consider several of the

issues that influence implementations of monitors. Though we

simulate a distributed monitor in the prototype system

described later, developing and verifying an actual monitor

are beyond the scope of the work reported here. However, we

www.manaraa.com

33

should note that a monitor is truly the heart of a performance

measurement system and much work remains to be done in the

area of monitoring multicomputer systems.

Monitoring, or instrumented execution, is the extraction

of dynamic information concerning a computation as the

computation proceeds. It involves observing and recording

information at particular points in the computational system.

The points may be positions in the spatial domain of the

system or moments in the temporal domain of the system. A

monitor may be implemented in hardware, firmware, or software,

or some combination of the three. A hardware monitor consists

of probe-type circuitry physically built into the machine. A

software or firmware monitor typically includes special

routines (or sections of code) augmented for data generation,

collection, and analysis. Some form of hardware support is

being included in most present and future systems; for

example, a hardware-assisted software monitor may consist of

software that generates the monitoring data and hardware that

captures (that is, collects and stores) the data. Ideally, a

monitor should be transparent to the user, implemented at the

system level rather than the application program level. Two

possibilities include compiler instrumentation and operating

system instrumentation. These approaches permit access to

useful system level information and automatic compensation for

monitoring artifact and measurement inaccuracies.

A note on terminology to ensure clarity may be useful at

this point. We have used and will use the term "monitor" and

its related forms in varying contexts. Interpretation within

the specific context should avoid confusion. Because the

adjective form "monitorial" is rather awkward to use, the noun

www.manaraa.com

34

form "monitor" or verb form "monitoring" may be used as an

adjective. For example, "monitor data" or "monitoring data"

may refer to the data processed by the monitor. Other

examples include "monitoring granularity" and "monitoring

artifact". In these examples, the term "measurement" can be

used interchangeably with "monitor" (or "monitoring"), for

example, "measurement data". In addition to being used as an

adjective, the term "monitoring" may be used as a noun.

Monitoring is a fundamental component of many computing

activities and has two primary applications; (1) debugging of

programs and (2) measuring (or tuning) performance. It is a

first step in understanding a computation, for it provides an

indication of what happened, thus serving as a prerequisite to

determining why it happened. Though a monitor may support

both debugging and measurement, the two activities have

certain distinctions. Debugging is typically done from a

programming viewpoint, while performance tuning may be from a

programming or engineering viewpoint. Debugging places more

stringent requirements on the role of the monitor. A monitor

should be able to support user interaction in real-time during

program execution; to suspend, single-step, and resume the

program execution; and to symbolically access program

information, such as code and variables. A monitor that

supports performance measurement also requires feedback from

program execution, but it may be able to use post-processing

of data rather than real-time processing, which eases some

requirements. But other obstacles remain. For example, data

management, particularly data storage, becomes a greater

concern. Further, a monitor needs to handle a potentially

large number of statistical calculations and should provide an

www.manaraa.com

35

interface to a graphical display. Finally, though the monitor

inevitably affects the performance it attempts to measure, its

perturbations should be minimal so that it remains a useful

tool for evaluating performance. Present monitors are being

developed for both applications; however, in accord with the

objectives of this work, we focus on performance measurement.

Before proceeding with a discussion about monitoring

multicomputers, a few general comments about instrumentation

may be helpful. A subject system or target system is the

program and machine being monitored. The additions to the

subject system to accomplish performance measurement comprise

the instrumentation. A collection point [Couch, 1989] or

sensor [Snodgrass, 1988] is a mechanism (for example, a

hardware probe or system routine) that captures performance

data concerning an event within the subject system. An event

is viewed as occurring instantaneously and reflects a change

in the state of the system. Thus, a state has some time

duration and is demarcated by the events that caused the

transitions to it and from it. More specifically, an event is

associated with a change in the values of one or more

parameters of interest.

To observe the behavior of the system, we track the

values of specified parameters during program execution and

generate a list of changes in their values, in other words,

we log occurrences of events. The list is called an event

trace, and the elements of the list are called notes [Couch,

1989] or data packets [Snodgrass, 1988]. A data packet may be

as simple as a bit that is complemented when the event occurs

or as complex as a long record containing system data.

Typically, a data packet encodes information that includes

www.manaraa.com

36

event type, parameter name, parameter value, and a time stamp.

If the event is detected and the information logged when the

event occurs, data packets are called traced data packets, and

their generation is synchronous with the event. Alternatively,

sampled data packets are logged only via an external request,

and thus their generation is asynchronous with the event.

Enabling a sensor allows it to detect events and generate data

packets when events occur. Sensors may be enabled and

disabled via flags. A traced sensor, which generates traced

data packets, is enabled in the above sense; a sampled sensor,

which generates sampled data packets, is triggered at selected

times. Filtering is the removal of irrelevant data packets

before they are completely processed by the monitor.

In contemporary implementations, monitoring may be

summarized as consisting of three phases; (1) data

collection, (2) data analysis, and (3) data display. More

specifically, monitoring consists of a series of steps

[Snodgrass, 1988]:

(1) sensor configuration, which involves deciding what

information each sensor will record and where the

sensor will be invoked;

(2) sensor installation, which involves coding sensors

(if in software) and defining temporary and permanent

storage of collected data;

(3) enabling sensors, which permits some sensors to be

permanently enabled, storing monitoring data whenever

executed, and others to be individually or

collectively enabled;

(4) data generation, which involves executing the subject

program and storing the collected data;

www.manaraa.com

37

(5) analysis specification, which involves deciding what

statistics to compile, usually done via a menu of

available statistics or a simple command language;

(6) display specification, which involves deciding how to

view the data, usually done via a menu of formats,

ranging from a list of data packets printed in a

readable form to standard reports to simple graphics;

(7) data analysis, which usually occurs in batch mode

after the data have been collected; and

(8) display generation, which usually occurs immediately

after data analysis.

Steps one through four comprise the data collection phase;

steps five and seven, data analysis; and steps six and eight,

data display. Most monitoring systems include these eight

steps, although the ordering and composition may differ

slightly.

Monitoring Complex Systems

Thus far, we have considered monitors in general.

However, monitors for complex systems demand special

consideration. Two important distinctions relevant to

monitoring include: (1) complex systems often exhibit a lack

of central control, and (2) complex systems may consist of a

very large number of components. In this section, we address

several problems that result from these characteristics,

including data storage, clock synchronization, and performance

perturbations.

For distributed memory computer systems, a separation of

the monitor into two components is required: (1) a remote

www.manaraa.com

38

monitor, performing functions requiring close interaction with

the user; and (2) a resident monitor, performing functions

requiring close interaction with the subject system. The

distributed resident monitor exists at each processor, sending

collected data to the centralized remote monitor.

Functionally, the resident monitor collects the data packets

and (possibly) interacts with the operating system, and the

remote monitor analyzes and displays the data. Data

collection is divided between the sensor storing the data

packet in a buffer and the resident monitor extracting the

data packets from the buffer and assembling them into larger

packets to be sent to the remote monitor.

Collected data is stored in a memory buffer on each

processor node. If the program execution time is small

enough, or the buffer large enough, this approach may be

sufficient to handle data storage needs. Several options

exist when the buffer size is insufficient, including

terminating logging, using a circular buffer [Couch, 1989],

using a partitioned buffer [Rudolph and Reed, 1989], using a

disk buffer, data streaming, filtering, and distributing the

analysis. Data storage requirements vary depending on the

implementation. Sensor control is particularly important,

since a complex system has a potentially large number of

sensors. A brute-force enabling of all sensors is excessively

inefficient, since more storage is needed if all data are

first collected and then analyzed. Alternatively, less

storage is needed if the desired information is specified

before any actual data are collected. Hence, only the

necessary sensors should be enabled, thereby filtering out

unnecessary data packets. Filtering should occur early and

www.manaraa.com

39

often, so that scarce storage, processing, and communication

resources are not expended on data that are later discarded.

In fact, in terms of the resources in a complex system, it is

likely impossible to store data on every event when many

sensors are present. Powerful filtering techniques could even

enable and disable sensors based on previously received data.

However, achieving high degrees of filtering requires

additional storage and processing to determine if a sensor is

indeed enabled. This is expensive in an environment

supporting many entities. Optimally, we want to enable the

minimum number of sensors and perform just the computations

needed to derive the desired information. Substituting

sampled sensors for traced sensors where feasible can also

reduce data storage overhead.

The data analysis generally occurs at a central node that

hosts the remote monitor. The data packets are sent to this

node from buffers in the processors where the sensors were

located that generated the packets. However, much of the

analysis could occur locally, with only that analysis

requiring more global information being performed remotely

(i.e., at the host). This distribution of analysis reduces

the amount of data stored and also the amount of data

transmitted between resident and remote monitors. Clearly, it

is beneficial to limit the data transmissions between resident

and remote monitors, both to limit the possible effects on

application program performance and to keep the transmission

rate within the bandwidth of the communications network.

Another issue that surfaces is the lack of a global

clock. On most distributed systems, each processor has an

independent clock. The data packets generated by the sensors,

www.manaraa.com

40

however, contain time stamps that are supposed to represent

global times across the entire system. We cannot use

unsynchronized local clocks for timestamping events if we

expect to merge the event traces from all processors based on

the time stamps. However, it is theoretically impossible to

synchronize imprecise physical clocks over a distributed

network with nondeterministic transmission times [Lamport,

1978]. But it is possible to implement a time-keeping

algorithm that maintains a global clock with a bounded

imprecision. The algorithm ensures that a message is received

at a global time that is later than the global time at which

the message was sent, and it preserves a partial ordering of

local events. The distributed algorithm can be implemented in

the operating system to effectively synchronize clocks on all

processors. If the operating system provides a reliable and

fault tolerant communication mechanism, supporting recovery

from lost messages or crashed processors, then a global clock

is probably already computed by this mechanism.

Alternatively, it is possible to synchronize the clocks using

a global, serial connection to all processors [Rudolph and

Reed, 1989]. Because the clocks may still drift at a rate

large enough to affect the merging, a correction for any

drifting is typically included as the traces are merged. More

sophisticated approaches to clock synchronization are still

being developed.

A monitor inevitably affects the performance it attempts

to measure due to the instrumentation and to the storage,

processing, and communication overhead of event data in the

system. The effects are sometimes called performance

perturbations or monitoring artifact and may significantly

www.manaraa.com

41

degrade application program performance. Though there exist

ways to reduce the overhead, it cannot be eliminated. Hence,

a minimal performance penalty is usually accepted, and

perturbations are prescribed to be within certain allowable

limits. Generally, the more measurements taken, the greater

the perturbation of the system. One approach to limit the

perturbation for many measurements is to make many separate

measurements and combine the results. In any case, to present

accurate performance measurements, the monitor should be

designed to compensate for the effects.

Many of the problems encountered with complex systems are

merely a result of the size of the system. Though systems

continue to grow larger, the endless quest for a truly

scalable machine reveals the difficulty of building real

systems that have minimal scaling effects. Clearly, if it is

difficult to build a system that scales well, it is not easy

to build a monitor, overlooking this system, that scales well.

We have already mentioned some of the problems of scale in

collecting a large volume of performance data. The remaining

chapters introduce a possible solution to problems of scale in

representing a large volume of performance data. The solution

may also help us to better understand scaling effects within

the machine. There is a pressing need in the study of complex

systems to effectively deal with scalability and problems of

scale.

www.manaraa.com

42

Data Mêmagement

In an abstract sense, monitoring is concerned with

retrieving information and presenting this information in a

derived form to the user. Hence, the monitor is an

information processing agent, with the information describing

time-varying relationships between entities involved in the

computation. In fact, the sensors associated with the monitor

consume information as input and then generate information as

output in the form of event records. In simplistic terms,

tables of event records are created at each processor,

describing local behavior, and then the tables are merged into

one or more tables describing global behavior. We might find

this organization of data fairly manageable, at least

conceptually, since tables are such a familiar construct.

However, because the tables are possibly very large, we need

efficient and effective ways to access and present the

information contained in them.

It may be illustrative to comment on one way to access,

and in general manage, the tabular information, before looking

at ways to present the information. Snodgrass has developed

formalizations of the information processed by a monitor and

proposed that the information can be perceived as a relational

database [Snodgrass, 1988]. He differentiates four types of

databases by their ability to support temporal information:

snapshot, rollback, historical, and temporal [Snodgrass and

Ahn, 1986]. Furthermore, he suggests that the historical type

is appropriate for monitoring because of its ability to model

the dynamic state of a computation [Snodgrass, 1988]. At a

glance, the historical type of database is a natural way to

www.manaraa.com

43

view monitoring information. When information is stored to

update the status of the system, event data is recorded along

with a time stamp in an event record (or data packet).

Instead of a new event record overwriting an old one, event

records are preserved (at least until processing is done), and

the time stamp is used to give a partial ordering of the event

records in the event trace. So the state of the system at a

particular moment in time can be reconstructed from the most

recent event records with time stamps less than or equal to

the desired time. In fact, the global event trace can be

conceptually partitioned into any number of tables depending

on the desired view of the data. Thus, the dynamic behavior

of the system is available as a collection of tables, or, in

database terms, relations. In practice, the tables are only

conceptual and do not actually collectively exist in their

entirety as data stored either in main memory or in secondary

storage.

This fictional database stores primitive or basic

information that is captured by the sensors. The analysis

process then produces derived information. Derived

information typically holds more meaning for the user.

Flexibility in analysis extends the usability of the tool,

since (derived) information not anticipated at the time the

monitor was implemented may still be requested by the user,

provided the basic information is available to the monitor.

Some command language is typically provided to specify the

derived information. The command language may be very

sophisticated, such as TQuel, the general temporal query

language for the relational monitor described by Snodgrass

[Snodgrass, 1988]. However, it is usually simpler, such as

www.manaraa.com

44

the checklist windows of Seeplex [Couch, 1989], or the

softkeys of various workstation-based tools.

Each event record in the fictional database has some

number of fields. One field identifies the time that the

event occurred. Another field identifies the location where

the event occurred. Position is denoted by processor number,

process name, channel number, or similar attributes. The time

and position attributes are essential if the measurements are

to reflect the temporal and spatial behavior of the system.

Other attributes identify and describe the event. Events may

be placed in categories, including: message-related, process-

related, system-related, and user-defined [Rudolph and Reed,

1989]. Several events may be associated with message

transmission, including send request, start of transmission,

end of transmission, receive request, and actual reception.

Many of the message events are logged with the sequence number

of the message. This number is generated by the sending

processor node; thus, a message's source node and sequence

number uniquely identify it. This allows event processing

software to associate send events on the source node with

receive events on the destination node. Events recording

entry to and exit from system calls provide information about

the time consumed by operating system activities (versus user

activities). System time is typically partitioned according

to type of system call, including message activity, input-

output activity, system activity (e.g., load balancing), and

idle (no activity). If multiple processes are supported, then

process-related events may record context switches between

processes and identify currently executing processes (or

objects in an object-oriented environment). Finally, user

www.manaraa.com

45

events are triggered by the application program, usually via

special operating system calls. These may record sections of

code passed or values of variables.

At a fundamental level, the fictional database is just a

table or set of data. By definition, it is a collection of

multivariate data, because it involves a group of entities

about which we have several quantitative measurements. The

entities are the processors and processes in the concurrent

computer. Data on these entities have been called

observations, events, records, notes, and packets (among other

similar terms). The different measurements have been referred

to as variables, attributes, fields, metrics, and parameters

(again, among other similar terms). By viewing the data in

the sense of multivariate data, we have at our disposal

powerful techniques for analyzing and displaying the data. We

will return to this idea in Chapter V.

Perspectives

The state of the computer system, and thus system

performance, can be viewed from different perspectives. Here,

perspective refers to observational viewpoint or frame of

reference. Different perspectives provide different pieces of

the performance puzzle.

Three types of perspective are possible:

(1) program (algorithm or software),

(2) architecture (logical network), and

(3) machine (physical network or hardware).

A program perspective shows the flow of control and data in

terms of algorithm entities (e.g., processes or data

www.manaraa.com

46

structures). A notation for this typically uses two or more

dimensions, including flowcharts, graphs, diagrams, or icons.

A similar notation may be used for an architecture

perspective. An architecture perspective highlights the

logical structure and interaction of the components in the

computer system (e.g., processors and channels). A machine

perspective focuses on the implementation of the architecture

in two- or three-dimensional space. The machine perspective

could extend down into a circuit-level description of the

hardware.

Figure 3.1 contains an example illustrating the

relationships among these three perspectives. The program is

represented via a process communication graph. The

architecture is assumed to be a three-dimensional (eight-node)

binary hypercube and is represented by a node interconnection

graph. Finally, the machine is a two-dimensional geometrical

layout, where each cell in the layout denotes a node within

the computer system. Observe that Figure 3.1 also describes

the process that maps a program onto a machine to achieve

optimal performance. As presented in Chapter II, a

substantial amount of research work has focused on the first

two perspectives and on the associated mapping between

algorithm and architecture. The remaining chapters describe

the work we have done to also focus on the last perspective

and on the mapping onto the machine.

Continuing with our discussion of perspective, we can

define two levels of perspective:

(1) microscopic (low-level) and

(2) macroscopic (high-level).

A microscopic perspective focuses on the individual components

www.manaraa.com

PROGRAM

r*

NETWORK

MACHINE

Figure 3.1. Three perspectives on system performance:
program, architecture, and machine

www.manaraa.com

48

of the system and evaluates each in isolation. Specific

behavior can be inspected in detail. A macroscopic view

reflects the overall behavior of the collection of components.

Aggregrate (or global statistical) measures of performance can

be obtained. The behavior of any component is analyzed in the

context of all components.

The levels of perspective are associated with monitoring

granularity. Monitoring granularity refers to the "size" of

the entities or events that are observed by the monitor. The

grain size influences the location and implementation of the

sensors in the subject system. The grain size may range from

less than one instruction to the whole program. Fine grain or

low level monitoring involves tracing at the level of

processor instructions, where new instructions change the

state of processor registers, memory, and so forth. Fine

grain monitoring requires hardware (or hardware-assisted)

sensors. Medium grain or intermediate level monitoring

involves tracing at the level of primitive operating system

routines. The activities being monitored typically cause

local state changes and may include interprocessor

communication, input-output, and context switching. Hardware

or software sensors are applicable to medium grain monitoring

(with the obvious cost and performance tradeoffs). Coarse

grain or high level monitoring involves tracing at the level

of sophisticated operating system routines, such as collective

communication routines or load balancing routines. The

activities being monitored cause global, system-wide state

changes. In essence, local state changes are lumped together

and their effect as a whole is observed rather than the

individual effects. Coarse grain monitoring results in the

www.manaraa.com

49

smallest overhead on system resources and the least amount of

detailed information. Software sensors are usually

sufficient. Depending on the implementation of the monitor,

information at particular levels in the subject system may be

outside of the scope of the instrumentation and thus may be

inaccessible for inspection.

In succeeding chapters, we use our knowledge about the

nature of the monitor and the information that it processes to

develop appropriate views of the information, views that will

enhance our understanding of system performance.

www.manaraa.com

50

chapter iv.

representing performance

Alice declared: "Dear, dear! How queer everything is today!
And yesterday things went on just as usual. I wonder if I've
been changed in the night? Let me think: was I the same when
I got up this morning? I almost think I can remember feeling
a little different. But if I'm not the same, the next
question is 'Who in the world am I?' Ah, that's the great
puzzle!"

Lewis Carroll, from Alice's Adventures in Wonderland

In this chapter, we move closer to the emphasis of this

work, which is perceiving and understanding program

performance on concurrent computers. The preceding chapter

explored the monitoring of multicomputers in terms of complex

systems. Given the abundance of monitoring information, we

now turn to visualization. We examine ways to represent

performance data, first presenting a spectrum of alternatives

and then selecting appropriate representations for

multicomputers.

Data Presentation

Performance data that are collected need to be analyzed

and then presented in some meaningful format. Roughly, the

analysis tells us what to look at, and the presentation tells

us how to look at it. Data presentation should reflect the

environment of a computation, because environmental conditions

largely dictate system performance. That is, we typically

www.manaraa.com

51

need to couple quantitative measurements of the system with

qualitative observations.

As an example, Reed gives an illuminating analogy

regarding peak versus actual (or achieved) performance [Reed,

1989]. When you need to drive someplace, say the grocery

store, can you predict how much time it will take? Of course,

it depends on how fast you can drive your car. Is it

reasonable to expect peak performance? That is, if your car

is capable of going, say, ninety miles per hour, is that the

speed at which you will travel? Clearly, that is not very

likely. It is more likely that your speed will vary along the

way, depending on the streets traveled, the traffic, traffic

lights, time of day, weather, accidents, and so forth. At

best, you can estimate your average speed, and use it to

predict your travel time. Although actual performance is more

useful than peak performance, it does not tell us much about

the actual trip. We may expand on Reed's analogy to expose

the need and usefulness of more details. For example, if

travel time is longer than might be expected, why is it?

Traffic may be slowing to a halt at a heavily used bridge. In

other words, we need to record specific times and places to

fully explain performance. In terms of computer systems,

single number performance measures may be of some use, but we

may also need to be presented with a detailed account of when

and where events occurred.

So, of the possible performance scenarios for complex

systems, some are more informative than others. A single

number such as peak performance or speedup is coarse and

without insight. Another single number, the mean value of a

distribution over all processors, has more information

www.manaraa.com

52

content, but focuses on one particular moment in time. It

isolates when events were observed. Alternatively, a timing

profile focuses on one particular position in the system, say

a processor. It isolates where events were observed.

A timestamped event trace, though selective in its

information content, comes closest to providing a detailed

account that includes both when and where events occurred. We

can view an event trace in several forms, including textual,

statistical, and graphical. Textual form comprises a raw

listing of the sequence of individual events. The large

number of events typically logged for a complex system makes

this form impractical for manual performance evaluation.

Statistical form is a compilation of statistics extracted from

the event trace. The statistics are typically timing and

counting metrics that give static insight about computation

and communication activities. Graphical form involves visual

display of information from the event trace and is especially

powerful if coupled with animation. Animation is the process

of stepping through the event trace and updating a display as

time progresses. There are many possible types of data

displays, including bar charts, line graphs, matrix diagrams,

and general graphs, to name a few. Animated visual displays

provide dynamic insight about computation and communication

activities.

Categories of Concurrent Computers

As discussed in the previous section, measurement data

should be presented in some meaningful format. Because

formats have different capacities for conveying information.

www.manaraa.com

53

the type of format to be used depends on the nature and volume

of the data to be presented. The nature and volume of

measurement data are determined by the computer system being

observed. In this section, we suggest a categorization of

computer systems that relates to the data generated during

performance monitoring. The intent is to create a framework

for the performance formats developed in the next chapter.

First, let us propose a metric that is proportional to

the potential volume and variability of monitoring data; call

it the complexity coefficient, CC. Let the complexity

coefficient represent the information-bearing capacity of the

computer system under study (including both processing-related

and communication-related information). For our purposes, the

complexity coefficient has the following definition:

CC = a»n + b«n

where n is the number of processors (computer size), a is the

number of bits per processor (processor size), and b is the

product of the number of channels, or neighbors, per processor

(network dimension) and the number of bits per channel

(channel width). So, roughly, CC is the sum of the processing

and communication capacities of the system, measured in bits.

A larger complexity coefficient means a potentially larger

volume of monitoring data, and this places greater

requirements on formats for presenting the data. The

information-conveying capacity of the presentation format

should meet or exceed the information-bearing capacity of the

computer system under study. Of course, the actual features

of the data set also depend on the application program, but a

metric independent of the program is sufficient for this work.

Via the complexity coefficient, complexity categories can be

www.manaraa.com

54

established with each category having some range of CC. A

computer system is then placed in a category depending on its

calculated value of CC. This provides a basis for comparing

computer systems.

Next, let us identify the types of data presentation that

may be assigned to the complexity categories. Two definable

features of data presentation are performance perspective and

performance format. The types of performance perspectives

include; program, network, machine, microscopic, and

macroscopic. These were discussed in Chapter III. Each type

of performance format fits into one of three representations;

(1) single number, (2) table, or (3) graph. More

specifically, the formats include;

• raw datum

• statistical datum

• table of data

• program flowchart

• program graph

• network graph

• basic chart

• ordered network graph

• multivariate (multidimensional) data plot

A raw datum is a single number performance indicator,

such as execution time, network bandwidth, or processor

throughput. A statistical datum is an aggregate measure,

possibly a spatial or temporal average, such as average

network latency. A table of data is any listing or collection

of textual data, including the actual event trace and a

compilation of raw or statistical datums. A basic chart, such

as a two-dimensional line or bar chart, is the traditional

www.manaraa.com

55

mechanism for displaying data. A program flowchart is a

conventional icon-based control or data flow diagram

illustrating program operation. A program graph is a general

graph with nodes and edges that depicts the process or object

structure of the program. Here, structure refers to the

topology or connectivity of the constituent components, which

are shown as nodes, and an edge or connection implies

communication between the two adjoining nodes.

A network graph, on the other hand, is a general graph

that depicts the processor structure, from an architectural or

logical viewpoint. An ordered network graph is a network

graph in which the nodes are placed in a special pattern, such

as a gray code circle representation for a hypercube topology.

Finally, a special kind of multivariate (or multidimensional)

data plot that we refer to as a machine plot is a two- or

three-dimensional geometrical layout. It illustrates

processor configuration and information about the processors.

Machine plots will be discussed in more detail in the next

chapter.

Table 4.1 pairs complexity categories with appropriate

types of performance perspectives and formats. Recall, the

capacity of the data presentation mechanism to convey

information should meet or exceed the processing and

communication capacities (given as the complexity coefficient)

of the computer system under study. In a rather coarse but

elucidative partitioning of the full range of complexity

coefficients, five overlapping complexity categories are

marked out. Each category corresponds to a particular type of

computer system, and the overlap results from similarities

among the systems. Despite the overlap, the ranges of

www.manaraa.com

56

complexity coefficients have distinguishable bounds and

largely depend on system size. The five systems we use for

comparison are: uniprocessor, bus multiprocessor (shared

memory), small multicomputer, medium multicomputer, and large

multicomputer. The multicomputer distinctions are consistent

with a description given in [Reed and Fujimoto, 1987].

Further, no assumptions are made about the multicomputer

network topology, and the topology can range from a ring to a

mesh to any k-ary n-cube (cubes with n dimensions and k nodes

in each dimension, of which the binary n-cube is a special

case). Also, we should note that the values used to define

the computer systems are realizable with present technology

but may not exist in current systems; so the ranges are broad,

and actual values would tend to cluster in fairly narrow

regions. The upper bound for channel width results from a

discussion in [Dally, 1987] about VLSI wiring density and pin

count limitations.

Observe the following by examining Table 4.1. The larger

computer systems require more global, hierarchical approaches

to representing performance. Though we still benefit from

access to low-level details, or a microscopic view, we first

need to see the higher levels, or a macroscopic view, so that

we are not overwhelmed by the details. Also, the increasing

importance of accurately accounting for both time and space as

systems scale up leads to visualization of performance data in

the context of the machine, not just the program or the

network. The more traditional formats, including numbers,

tables, and flowcharts, break down under the additional

complexity of large systems. Even general topological graphs

are not sufficient for very large systems. These formats

www.manaraa.com

Computer System Complexity System Data Presentation
System Processor Network Channel Channel Coefficient Type Performance Performance

Size Size Dimension Width Size Perspective Format
(n) (a) (bj) (62) (b=bj*b2) (CC=a*n+b*n)

1 1-32 0 0 0 1-32 uniprocessor P, Mi N1,T, G1,G4

2-50 1-32 1 1-16 1-16 4-2400 bus P. N, Mi NI. T. Gl, G2.
multiprocessor G3, G4

10-100 1-32 1-6 1-16 1-96 20-12800 small P. N, Mi NI, N2. T, Gl,
multicomputer G2, G3, G4, G5

100-1000 1-32 2-9 1-16 2-144 300-176000 medium P, N, M, N2, G2, G3,
multicomputer Mi, Ma G4, G6

1000-/ 1-32 2 ! 1-16 2-1 3000-/ large P, N, M, N2, G4, G6, (G2, oi
multicomputer Ma, (Mi) G3) ^

Perspective:
P = program
N = network

M = machine
Mi = microscopic

Format:
NI = raw datum
N2 = statistical datum
T = table of data

Gl = program graph; iconic

G3 = network graph: topological
G4 = basic chart
G5 = network graph: ordered
G6 = machine plot: geometrical

Ma = macroscopic G2 = program graph; topological

0 ; indirectly used, via a hierarchical selection mechanism
1 ; infinity

Table 4.1. Complexity categories for performance data
presentation formats

www.manaraa.com

58

simply cannot convey enough information at a glance. Though

the traditional formats are still very useful for viewing

isolated parts of the system, new formats for viewing the

system as a whole are essential. One of these formats, called

a machine plot, has been developed as part of this work and is

described in the next chapter. Finally, for an accurate and

(sufficiently) complete understanding of system behavior, it

is important to have a wide variety of views and

interpretations of monitoring data.

www.manaraa.com

59

CHAPTER V.

pictdiœs of performance

Nothing ever becomes real till it is experienced — even a
proverb is no proverb to you till your life has illustrated
it.

John Keats

The previous two chapters presented a framework that

supports the measurement and representation of performance

data associated with (possibly) large concurrent computers.

We have developed a methodology for pictorially displaying the

performance of multicomputer systems that is consistent with

this framework. This chapter describes the methodology and

defines novel metrics and graphics.

Methodology

The method we have developed for "picturing" the

performance of multicomputer systems creates a laboratory for

observing, analyzing, and displaying performance. A prototype

implementation that demonstrates the approach, including

simulated results from several case studies, is presented in

the next chapter. Four key elements of the approach are:

(1) Observation and measurement of performance via

instrumented execution of actual and synthetic

benchmark programs.

(2) Analysis and reduction of performance data via

www.manaraa.com

60

appropriate techniques.

(3) Calculation of aggregate measures of system behavior.

(4) Visual display of program performance via a computer

graphics format that illustrates computation and

communication activities in time and space within the

machine.

The fully-equipped laboratory configuration consists of

these components:

• multicomputer (real or simulated system)

• distributed software monitor (possibly with hardware

support)

• benchmark generator

• graphics workstation

• program database

• machine database

• event database

• statistical analysis tool

• visual analysis tool

Each of these components may be a highly capable subsystem by

itself. Quite a bit of development activity still remains to

be done in each area. Even more is needed to integrate the

components into a functioning enterprise. Thus, while much

work would be required to fully implement this laboratory, the

prototype described in the next chapter demonstrates that the

approach is both feasible and powerful.

Though an actual multicomputer is the intended target

system, the method works fine in conjunction with a

multicomputer simulator, which may be the only operational

form of the system in the early stages of development. The

software monitor is an instrumented version of the operating

www.manaraa.com

61

system and, given an actual multicomputer, may be assisted by

a hardware monitor. Special operating system routines log

events of interest at each node, so each node maintains a

trace that delineates its computation and communication

activities. Upon program completion, the event traces from

all nodes are combined into a global event trace, which forms

the event database described in Chapter III. Depending on the

implementation of the monitor, post-processing of event data

may be coupled with real-time processing. Whether retrieved

from the nodes during or after program execution, event data

is processed to reconstruct program state information and

extract other desired information.

Either instead of or in the absence of actual application

or benchmark programs, synthetic benchmark programs may be

executed. The benchmark generator creates user-specified

synthetic benchmarks that drive the system according to

predefined concurrent programming paradigms or network traffic

patterns. The machine database contains machine-dependent

information about network topology, routing, and physical

implementation, and it is accessed to interpret trace data in

the correct context. The program database contains

application-dependent information about the process (or

object) structure that can be inferred from the program text

and the event database. It can be accessed along with the

machine database to analyze the mapping of the program onto

the machine.

The statistical analysis tool comprises the statistical

software on the host system. It may also reside on the nodes

of the multicomputer, if any distributed analysis is

supported. The statistical software processes the monitoring

www.manaraa.com

62

data, calculating local and global statistics. Some

statistics are predefined and others may be user-defined. If

analysis is closely linked with monitoring, desired statistics

may be user-selected before runtime so that the monitor can

filter out unnecessary data.

The visual analysis tool pictorially displays the

dynamics of the system. It provides an interactive and

animated environment for replaying the spatial and temporal

behavior of the machine. Furthermore, via a hierarchical

presentation of data, it attempts to display performance data

at an appropriate level. Color-coded plots, described at the

end of this chapter, show system activity, and time-series

profiles can report statistical metrics and individual node

activity. Finally, the graphics workstation hosts the

multicomputer and maintains the performance databases and

software tools. It has a window-based user interface that

serves as a control panel for using the laboratory.

The following steps indicate how the method works:

(1) Configure the multicomputer for instrumented

execution.

(2) Set up the statistical analysis tool.

(3) Generate a synthetic benchmark (if needed).

(4) Run the application or benchmark program.

(5) Collect traces and create the event database.

(6) Set up the program and machine databases.

(7) Invoke the statistical and visual analysis tools.

(8) Evaluate the performance via displayed metrics and

graphics.

In summary, the methodology offers a combined prescription

for:

www.manaraa.com

63

(1) effective ways to specify, capture, and retrieve

information;

(2) effective ways to process information; and

(3) effective ways to display information.

The first item is achieved via instrumentation. The second,

via a database-like organization and multivariate cluster

analysis techniques. And the third, via multidimensional

graphics. We will consider the second and third items in more

detail.

Observable Parameters

Several factors determine the data that can be observed

and thus the measurements that can be made. Since the monitor

acts as our eyes into the system and is inevitably a selective

viewer, it significantly affects the observable data. The

more closely the monitor, specifically the instrumentation, is

integrated with the system, the more information that is

available to it. Close ties with the hardware yield machine-

level details, and close ties with the operating system

provide system-level and application-level details. Clearly,

if the system does not permit a certain level of integration

(or intervention), then certain parameters cannot be measured.

Observations are made by the sensors. The type of

sensor, where it is located, and when it is enabled determine

the information content of an observation. The observable

parameters that can be obtained directly via a sensor are

called basic metrics. Alternatively, the observable

parameters that are only partially defined by sensor

measurements are called derived metrics. A derived metric

www.manaraa.com

64

requires information from a database or calculations involving

other quantities to fully specify it. We consider each in

turn.

Basic metrics

A basic, or primitive, metric is an observable parameter

that can be obtained directly via a sensor. That is, it is

directly measurable. It is a local variable, describing an

observation from a low-level or microscopic perspective. A

minimal set of basic metrics consists of:

• time of occurrence

• position (processor number)

• process (or object) identification

• event identification

• values of event-specific variables

Time and position metrics are used to represent temporal and

spatial behavior. More importantly, the time stamp and

processor number uniquely identify the observation in a global

context. The event identification denotes the state change

associated with the observation. It is decoded to interpret

the values of any event-specific variables. Event-specific

variables pertain to the event categories specified in Chapter

III. The choice of variables depends on the monitor

implementation. For the purposes of this work, only several

variables are required to represent the desired view of

performance. For message-passing events relating to

interprocessor communication, we are interested in source and

destination processor numbers, message length, and channel

number. Message length (or size) is typically stated as a

byte count. For message-passing events relating to input-

www.manaraa.com

65

output, similar variables are important, except for one

distinction: either the source or destination is not a

processor. For process-related events, process size is of

interest. Process size is the load or amount of work done by

the process, typically stated as an operation count. The

granularity of an operation depends on the application

program. An operation may range from an integer or floating­

point operation to a module of code. Depending on the program

and the monitor, the load may be an actual, known quantity, an

approximate quantity, or possibly an expected quantity (if

probabilities are used for nondeterministic loads).

For subsequent use in defining derived metrics, we name

four of the basic metrics as follows;

• t : time

• p : processor number

• m : message length

• w : work

Time is expressed in seconds. The processor number is

typically a nonnegative integer sometimes used as the address

of the processor. At a fundamental level, both message length

and work represent amounts of information. Message length is

stated in bytes, where a byte is a group of eight bits, and

work is stated in terms of operations, which involve operands

and results that are also groups of bits. Hence, bits would

be an appropriate unit of measure.

www.manaraa.com

66

Derived metrics

A derived metric is an observable parameter that can be

obtained via a combination of sensor measurements, database

information, and calculations. It typically is a function of

one or more basic metrics. If a derived metric uses only

local information, say basic metrics from one spatial

locality, then it offers a low-level or microscopic

perspective on performance. Alternatively, if it includes

global information, then it gives a high-level or macroscopic

perspective. Global information involves metrics and other

information from more than one spatial locality.

A metric may be a function of the independent variables

time and position. It can be defined at a particular position

or point in space, say a processor; it can also pertain to a

range of positions. Further, a metric can be defined at a

particular moment in time, possibly the end of program

execution; it can also pertain to a period of time. Hence, a

metric may be for a single value or a range of values of an

independent variable. The types of metrics include timings,

counts, and ratios. A ratio may be a time rate, a density, a

percent, or other interesting comparison between values. In

some cases, it is useful to perform operations on a set of

values for a metric, including finding the average value,

maximum value, minimum value, and summation value. For use

later, general definitions for these operations follow. Let k

be the metric of interest, P be the highest processor number,

and T the latest time. Though these definitions cover the

full range of time and position values, subranges could be

specified.

www.manaraa.com

67

SUMo (k) ; p=p
s k
p=0

SUMt (k): t=T
s k
t=0

AVGp (k); p=P
S k / Np, where Np is the number of
p=0 processor values

AVGt (k): t=T
S k / N^/ where is the number
t=0 of time values

MAXp (k): Find

MAXt (k): Find

MINp (k): Find

MINt (k): Find

Many of the metrics used to evaluate program performance

on concurrent computers in some way quantify computational and

communication aspects of program execution. Some of these

metrics are comparisons between amounts of computation and

communication. However, there are no generally accepted units

of measure for amounts of computation and amounts of

communication. Several units of measure are meaningful. The

amount of work done by a processor can be derived from either

some number of granules of computation or computation quanta

(such as elements in a list or points in a domain) or number

of operations. The amount of message traffic through a

processor can be stated as some number of communication

quanta, such as bytes. Ultimately, for a pure comparison, we

may want to specify work and traffic in the same units, such

as bits. Expressing amounts of computation and communication

www.manaraa.com

68

in terms of the time required per quantum also facilitates

comparison.

Another point is worth mentioning. Communication over

the network has two components, local traffic and through

traffic. Local traffic consists of the messages sent or

received by a processor; that is, the processor is the source

or destination node. Through traffic consists of the messages

traveling through a node, enroute to a destination node.

Local traffic is directly observable. However, since message

routing is often handled by a special communications processor

on the node, through traffic is not visible to the monitor

unless sensors are located within the communications

processor. So, a value for through traffic may need to be

interpolated from available global information, such as the

routing strategy. Finally, half of the sum of local traffic

over all nodes is the total system traffic, because local

traffic is counted twice, at both source and destination.

Microscopic derived metrics that are of interest include:

• processor state

• operation count

• computation load (granule counr,)

• computation time

. computational energy (total work)

• computational power

• execution rate (throughput)

• program energy

• energy ratio

• message count

• communication load (byte count)

• communication time

www.manaraa.com

69

• communication intensity

• communication density

• communication flow

• I/O traffic

• channel usage

• execution time

• percent computation time

• percent communication time

• granularity factor

• communication overhead

These metrics are defined at a particular position, the

processor, typically at a particular moment in time.

Definitions for each follow.

Processor state describes the current activity of the

processor. The following types of activities may be encoded.

proc state = (mode, status, activity, communication)

Operation count is the cumulative number of operations

performed locally by tasks running on a processor. It is a

function of the basic metric, work, w.

where

mode
status
activity

€ {operating system, user}
e {idle, active}
e {none, computation, communication}

communication e {interprocessor send,
interprocessor receive
input, output}

t=T
op_cnt = s w at t=T, p=P

t=0

www.manaraa.com

70

The summation implies adding all values of w recorded for

processor P through time T.

Computation load, or granule count, is the cumulative

number of computation quanta or granules operated on by tasks

running on a processor. The size of a quantum depends on the

application, and possible values range from a bit to a byte to

a 64-bit word, or even larger. It is a function of the basic

metric, work, w. The constant Q is the number of quanta per

operation.

t=T
comp_ld = Q • S w at t=T, p=P

t=0

= Q • opcnt

Computation time is the cumulative time spent doing work,

or local processing activities that contribute to the solution

of the problem.

t=T
comp_tm = s At^ at t=T, p=P

t=o

Here, At^ refers to a time period during which work is done.

Computational energy, or total work, is the cumulative

amount of information processed by tasks running on a

processor. Information is measured in bits. It is a function

of the basic metric, work, w. The constant B is the number of

bits per operation. Alternatively, the constant Bq is the

number of bits per quantum.

www.manaraa.com

71

t=T
comp_energy = B • s w at t=T, p=P

t=0
= B • opcnt
= BQ • comp_ld

Computational power is the average temporal rate at which

work is done or energy is expended, exclusive of any overhead.

t=T
comp_power = comp_energy / S At^ at t=T, p=P

t=0

Here, At^ refers to a time period during which work is done.

Execution rate, or throughput, is the temporal rate at

which work is done, or energy is expended, over the duration

of program execution. This metric includes overhead effects.

execrate = comp_energy / T at t=T, p=P

Program energy is the total amount of information

expected to be processed by tasks running on a processor. It

is an estimate derived from knowledge about the program.

Information is measured in bits.

prog energy = ;f (program) at p=P

An amount can be determined automatically via proper analysis

of the program database. The user can also input a value.

Energy ratio is the ratio of computational energy to

program energy. It estimates the degree of completeness of

information processing on a scale from zero to one.

comp_energy
energy r = at t=T, p=P

prog_energy

www.manaraa.com

72

Message count is the cumulative number of messages sent

or received by the processor, including interprocessor

communication and input-output.

t=T
msg_cnt = s i^^ at t=T, p=P

t=0

Here, i^^ is a binary variable. ig^=l if an event recorded for

processor P through time T is message-related; otherwise ig^=0.

Communication load, or byte count, is the cumulative

number of communication quanta involved in message passing,

including interprocessor communication and input-output.

Here, we assume the size of a quantum is a byte. This metric

is a function of the basic metric, message length, m. We

include only local traffic in this definition, that is,

messages sent and received by the processor. Note that

through traffic could be included if sensors were available to

record it in local storage.

t=T
comm_ld = s m at t=T, p=P

t=0

Recall, the summation implies adding all values of m recorded

for processor P through time T.

Communication time is the cumulative time spent by the

processor in message passing, including interprocessor

communication and input-output.

t=T
comm tm = s At- at t=T, p=P

t=0

www.manaraa.com

73

Here, refers to a time period during which the (main)

processor is busy with communication activities.

Communication intensity is the cumulative amount of

information involved in message passing (for local traffic

only). Information is measured in bits. It is a function of

the basic metric, message length, m. The constant Bq is the

number of bits per quantum; a quantum is a byte, so Bq=8.

t=T
comm_int = Bq • s m at t=T, p=P

t=0
= BQ • comm_ld

Communication density is the amount of information

involved in message passing that exists at the time of

interest (for local traffic only). Information is measured in

bits. This indicates the number of bits involved in

communication at a particular time within the "space" of the

processor node .

t=T
comm_den = Bq • s mm at t=T, p=P

t=0

Here, mg, refers to the lengths of messages that are currently

being sent or received, including any buffered messages, at

time T. The constant Bq is the number of bits per quantum; a

quantum is a byte, so BQ=8.

Communication flow is the time rate at which information

involved in message passing is processed and transmitted (for

local traffic only). It indicates the rate at which bits

"flow" into and out of the "space" of the processor node.

www.manaraa.com

74

t=T
coinin_flow = coimn_int / S Atj^ at t=T, p=P

t=0

Here, Atg^ refers to a time period during which the processor

node is busy with communication activities. The endpoints of

a time period depend on the data that can be logged by the

monitor. Optimally, a message send time interval would range

from initiation of message transmission by the program to

completion of hardware transmission (at the source node). A

message receive time interval would range from physical

reception of the message to completion of message transmission

and processing by the program (at the destination node).

I/O traffic is the portion of the communication load due

to input-output activities (for local traffic only).

t=T
io_traffic = s mjQ at t=T, p=P

Here, mjQ refers to the lengths of messages (in bytes) that

are recorded as having a type of either input or output.

Channel usage is the number of communication channels

currently being used for message passing at the time of

interest (for local traffic only).

t=T
chan_use = s ich,T at t=T, p=P

Here, ich,T ^ binary variable. ich,T~^ if a message-

related event recorded for processor P through time T

generates traffic on channel ch during time T; otherwise

ich,T~®* ^ relative value may be stated as the ratio of

channel usage to the number of channels per processor.

Execution time is the total amount of time the processor

www.manaraa.com

75

node has been involved with program execution. It begins at

time t=0, when the processor node is initialized. It should

be.equal to the sum of computation time and communication time

(within reasonable measurement error).

exectm = T or T^one t=T, p=P

T is the time of interest. Tdone the maximum time recorded

for the processor. If T is greater than T^one' then TjjQ^e is

used.

Percent computation time is the percent of the total time

that is spent doing work. This is sometimes referred to as

computational efficiency.

comp_tm
%comp_tm = X 100%

exec_tm

Percent communication time is the percent of the total

time that is spent doing message passing.

comm_tm
%comm_tm = x 100%

exec_tm

Communication overhead is a measure of the time spent

communicating per unit of time spent doing work. It is the

ratio of communication time to computation time.

comm_tm
comm_ovrhd = at t=T, p=P

comp_tm

www.manaraa.com

, 7 6

Granularity factor is a measure of the amount of

information involved in processing activities relative to the

amount of information involved in communication activities.

It is the ratio of computational energy to communication

intensity. It roughly indicates the number of bits of

computation per bit of communication.

comp_energy
gran fact = at t=T, p=P

comm_int

If through traffic is not locally discernible via sensors

at a processor node, it can be (roughly) reflected in the

communication metrics by using global information. What is

needed is a function that interpolates position and time along

the route of the message. Hence, it depends on the message

routing strategy of the operating system. In the simplest

case, a specific route and a uniform rate along the route are

assumed. Obviously, more complex cases are likely to occur,

requiring more sophisticated interpolation functions. The

function should generate event records similar to any message-

related event record except with a type specified as through

traffic. These event records would then be used to compile

the desired statistics. We refer to this function by:

Interpolate^ (e^^, routing algorithm).

It takes as input a stream of message-related event records,

e^g, and a routing algorithm. It matches send events with

corresponding receive events and notes source and destination

processor numbers and time stamps. Then, based on the routing

algorithm, it determines (the most probable) intermediate

nodes, if any, enroute from source to destination. Dividing

the transmission time interval equally, it associates a time

www.manaraa.com

77

with each visit to a processor node. This information is

stored in event records along with the type and other message

information. The output of the function is a stream of

through traffic event records, e^hru* For clarity, we mark

any metrics that use this function with a subscript "thru."

The communication metrics include message count,

communication load, communication time, communication

intensity, communication density, communication flow, channel

usage, and I/O traffic. The previous definitions for

microscopic metrics were for local traffic only. A value that

reflects through traffic at processor P may be obtained by

invoking Interpolate_jf and performing some additional

processing on the resulting through traffic event records.

The following definitions specify the additional processing.

Let t=T and p=P be the time and processor of interest,

respectively. The subscript "tot" denotes a total value for

the metric.

msg_cntthru ~ count of the number of event records in
the result of Interpolate;f

msg_cnttot = msg_cnt + msg_cntthru

t=T
comm_ldtjjj^ = s m^^ru

t=0

comm_ldj.Q^ = comm_ld + comm_ldthru

Here, m^-jj^u refers to the lengths of messages that are

recorded as being of type through traffic, which includes all

event records generated by Interpolate_J-.

www.manaraa.com

. 7 8

t=T
coinm_int^jjj^ = BQ • S ^thru

t=0
= BQ . coinm_ldthru

coinm_inttot ~ coinm_int + coinm_int^jjj^

The constant BQ is the number of bits per quantum; a quantum

is a byte, so BQ=8.

t=T
COMM_DENTHJ^ = BQ "^^^^THRU,T

comm_den^Q^ = comm_den + comm_den^jjj^

Here, m^hru,T refers to the lengths of messages that are of

type through traffic and are currently being transmitted.

comm_flowthru = comm_intthru / ̂ At^^ru

comm_flowtot = comm_inttot / Z (Atj^ + At^hru)

Here, refers to a time interval during which through

traffic visits a processor node, which can be determined from

the event record list generated by InterpolateAt^ refers

to a time period during which the processor node is busy with

communication activities. The summation involves all time

intervals for processor P (excluding any duplicate time

periods, so that each time is counted only once).

t=T
io_trafficthru ~ ^ ̂ 10,thru

t=0

io_traffictot = io_traffic + io_traffictj^j^

www.manaraa.com

79

Here, mio^thru refers to the lengths of messages that are

recorded as having a message type of either input or output

and a type of through traffic. That is, event records for

input-output communication activities are processed by

Interpolate_/, and the resulting event records reflect I/O-

related through traffic.

chan_use^jj^ = count of the number of channels being used
at time T in the result of Interpolate^

chanuse^Q^ = chan_use + chan_usethru

Many of the macroscopic derived metrics are global

measures based on corresponding microscopic metrics. These

metrics involve some type of aggregate operation over all

local values. Common aggregate operations include summation,

averaging, and extrema-finding. A variable name used to

denote a global measure will be prefixed with a "G_". A

definition based solely on an aggregate operation has a

standard form. Given the aggregrate operation "op" and the

microscopic metric "k", the global metric is defined as

follows: G_KQP = op(k).

Macroscopic derived metrics that are of interest include:

• processor spatial coordinates

• state (or activity) occurrences

. operation count

• computation load

• computation time

• computational energy

• computational power

• program energy

• energy ratio

www.manaraa.com

80

• message count

• communication load

• communication time

• communication intensity

• communication density

• communication flow

• I/O traffic

• execution time

• percent computation time

• percent communication time

• granularity factor

• communication overhead

• utilization

• channel utilization

• concurrency

• communication concurrency

• balance

• communication balance

• efficiency

• synergy

These metrics are defined over the space of the whole system,

either at a particular moment in time or over the lifetime of

the system. Definitions for the metrics follow.

Processor spatial coordinates give the position of the

processor in a physical layout, such as a one-, two-, or

three-dimensional grid. It is a function of the basic metric,

processor number, p. The coordinates depend on the mapping

function used to map or embed nodes of the network topology

onto the physical topology. The result of this function (and

the value of this metric) is a tuple with one, two, or three

www.manaraa.com

81

components corresponding, respectively, to a one-, two-, or

three-dimensional physical topology.

proc_coord = MappingJ (p, N, topology)

Here, N is the total number of processors in the system, and

topology refers to the network and physical topologies.

State occurrences, or activity occurrences, are absolute

or relative indicators of the number of processors in each of

the defined (and recorded) processor states. Possible states

or activities include computing, sending, waiting, receiving,

inputting, and outputting. An absolute value is a count of

the number of processors in the specified state at a

particular moment in time. A relative value is a ratio of the

absolute value to the total number of processors in the

system.

Operation count is based on the microscopic metric,

opcnt. Aggregate operations include SUMp, AVGp, MAXp, and

MINp.

G_op_cntsuMp = SUMp (op_cnt)

G_op_cnt;^VGp = AVGp (op_cnt)

G_op_cntnj^p = MAXp (op_cnt)

G_op_cntjjjjjp = MINp (op_cnt)

Computation load is based on the microscopic metric,

comp_ld. Aggregate operations include SUl^, AVGp, MAXp, and

MINp.

www.manaraa.com

G_comp_ldsxjMp = SUMp (comp_ld)

G_comp_ld;^Vgp = AVGp (comp_ld)

G_comp_ldji;^p = MAXp (coinp_ld)

G_comp_ldj{jj|p = MINp (comp_ld)

Computation time is based on the microscopic metric,

comp_tm. Aggregate operations include SUMp, AVGp, MAXp, and

MINp.

G_comp_tmgujjp = SUMp (comp_tm)

G_comp_tm^yQp = AVGp (comp_tm)

G_comp_tmjj^p = MAXp (comp_tm)

G_comp_tmjjjjjp = MINp (comp_tm)

Computational energy is based on the microscopic metric,

comp_energy. Aggregate operations include SUMp, AVGp, MAXp,

and MINp.

G_comp_energysuiip = SUMp (comp energy)

G_comp_energy^yQp = AVGp (compenergy)

G_comp_energyjj^p = MAXp (comp_energy)

G_comp_energyjjjjjp = MINp (comp_energy)

Computational power is based on the microscopic metric,

comp_power. Aggregate operations include AVGp, MAXp, and

MINp.

G_comp_power^YQp = AVGp (comp_power)

G_compjpowerji^p = MAXp (comp_power)

G_comp_j)owerjijjjp = MINp (comp_power)

A useful definition that gives the overall rate of doing work

(exclusive of overhead) is:

www.manaraa.com

83

G_coinp_power = G_comp_energygy^p / s At^

At^ refers to a time period during which work is done. The

summation involves all time intervals over all processors,

excluding any duplicate time periods (so that each global time

is counted only once).

Execution rate is based on the microscopic metric,

execrate. Aggregate operations include AVGp, MAXp, and MINp.

G_exec_rate^YQp = AVGp (execrate)

G_exec_ratej{^p = MAXp (exec rate)

G_exec_ratejijj|p = MINp (exec rate)

A useful defintion that gives the overall rate of doing work

over the duration of program execution (including overhead)

is:

Gexecrate = G_comp_energygy ^p / MAXp(exec_tm)

= G_comp_energysuMp / G_exec_tmMAXp

Program energy is based on the microscopic metric,

progenergy. Aggregate operations include SUMp, AVGp, MAXp,

and MINp.

G_prog_energysu}ip = SUMp (prog_energy)

G_jprog_energy^ygp = AVGp (prog_energy)

G_j)rog_energyjj^p = MAXp (prog_energy)

G_prog_energyjiiNp = MINp (prog_energy)

Energy ratio is based on the microscopic metric,

energy_r. Aggregate operations include AVGp, MAXp, and MINp.

www.manaraa.com

84

G_energy_rj^ygp = AVGp (energy_r)

G_energy_rMAXp = ^AXp (energy_r)

G_energy_rMiNp = MINp (energy_r)

A useful definition that gives the overall ratio is:

SUMp(comp_energy) G_comp_energygy^p
Genergyr = = —

SUMp(prog_energy) G_prog_energysuMp

Message count is based on the microscopic metric,

msg_cnt. Aggregate operations include AVGp, MAXp, and MINp.

G_msg_cntj^yGp = AVGp (msg_cnt)

G_msg_cntji;^p = MAXp (msg_cnt)

G_msg_cntjjjjjp = MINp (msg_cnt)

Similar definitions hold using msg_cntf>)-p, and msg_cnt^Q^. A

definition for the cumulative number of messages in the system

is:

G msg cnt = SUMp(msg_cnt) / 2

Communication load is based on the microscopic metric,

comm_ld. Aggregate operations include AVGp, MAXp, and MINp.

G_comm_ldj^ygp = AVGp (comm_ld)

G_comm_ldji^p = MAXp { comm_ld)

G_comm_ldjjjjjp = MINp (comm_ld)

Similar definitions hold using comm_ld^^^ and comm_ldtof &

definition for the cumulative number of communication quanta,

or message bytes, in the system is:

G_comm_ld = SUMp(comm_ld) / 2

www.manaraa.com

Communication time is based on the microscopic metric,

comm_tm. Aggregate operations include SUMp, AVGp, MAXp, and

MINp.

G_coinm_tmgujjp = SUMp (comm_tm)

G_comm_tm^yQp = AVGp (comm_tm)

G_comm_tm2{^p = MAXp (comm_tm)

G_comm_tmjijjjp = MINp (comm_tm)

Communication intensity is based on the microscopic

metric, comm_int. Aggregate operations include AVGp, MAXp,

and MINp.

G_comm_int^VQp = AVGp (comm_int)

G_comm_intjj^p = MAXp (comm_int)

G_comm_intjiiNp = MINp (comm_int)

Similar definitions hold using comm_intthru comm_inttot'

A definition for the cumulative amount of information involved

in message passing in the system is:

G comm int = SU1^(comm_int) / 2

Communication density is based on the microscopic metric,

comm_den. Aggregate operations include SUMp, AVGp, MAXp, and

MINp.

G_comm_dengujjp = SUl^ (comm_den)

G_comm_den;^yQp = AVGp (comm_den)

G_comm_denjj;^p = MAXp (comm_den)

G_comm_denjjjjjp = MINp (comm_den)

www.manaraa.com

86

Similar definitions hold using coimn_den^^2ru comm_den^Qt.

Communication flow is based on the microscopic metric,

comm_flow. Aggregate operations include AVGp, MAXp, and MINp.

G_comm_flow^yQp = AVGp (comm_flow)

G_comm_floWjj2^p = MAXp (comm_flow)

G_comm_flowjijjjp = MINp (comm_flow)

Similar definitions hold using comm_f1ow^h^^ and comm_flowtof

A useful definition that gives the overall rate of processing

and transmitting message information is:

G_comm_flow = G_comm_int / s Atj^

Atj^ refers to a time period during which the processor node is

busy with communication activities. The summation involves

all time intervals over all processors, excluding any

duplicate time periods (so that each global time is counted

only once).

I/O traffic is based on the microscopic metric,

io_traffic. Aggregate operations include SUMp, AVGp, MAXp,

and MINp.

G_io_trafficsujjp = SUMp (io_traffic)

G_io_traffic^VQp = AVGp (io_traffic)

G_io_trafficjj;^p = MAXp (io traffic)

G_io_trafficj^jjjp = MINp (io_traffic)

Similar definitions hold using io_trafficthru

io_traf f ictot•

Execution time is based on the microscopic metric,

exec_tm. Aggregate operations include SUM^, AVGp, MAXp, and

MINp.

www.manaraa.com

G_exec_tmsujjp = SDMp (exec_tm)

G_exec_tm^yQp = AVGp (exec_tm)

G exec tm^^p = MAXp (exec_tm)

G_exec_tmj^jjjp = MINp (exec_tm)

Percent computation time is based on the microscopic

metric %comp_tm. Aggregate operations include AVGp, MAXp, and

MINp.

G_%comp_tm^yGp = AVGp (%comp_tm)

G_%comp_tmji^p = MAXp (%comp_tm)

G_%comp_tmjjji|p = MINp (%comp_tm)

Percent communication time is based on the microscopic

metric %coinm_tm. Aggregate operations include AVGp, MAXp, and

MINp.

G_%comm_tm^Yep = AVGp (%comm_tm)

G_%coinm_tmji2^p = MAXp (%comm_tm)

G_%comm_tmjjjup = MINp (%comm_tm)

Granularity factor is based on the microscopic metric

granfact. Aggregate operations include AVGp, MAXp, and MINp.

G_gran_fact^yQp = AVGp (gran fact)

G_gran_factji^p = MAXp (gran_fact)

G_gran_factjjjjjp = MINp (gran_fact)

A useful definition that gives the overall ratio is:

SUMp(comp_energy) G_comp_energygu^p
Ggranfact = = =—

SUMp(comm_int) G_comm_intgujip

www.manaraa.com

, 8 8

Communication overhead is based on the microscopic metric

comm_ovrhd. Aggregate operations include AVGp, MAXp, and

MiNp.

G_comm_ovrhd;^yQp = AVGp (comm_ovrhd)

G_comm_ovrhdjj^p = MAXp (comm ovrhd)

G_comm_ovrhdjjji|p = MINp (comm_ovrhd)

A useful definition that gives the overall ratio is:

SUMp(comm_tm) G_comm_tmgujjp
G_comm_ovrhd = = —

SUMp(comp_tm) G_comp_tmg^^jp

Concurrency is the number of active processors involved

in program execution.

concurrency = count of the number of active processors
< N

where N is the number of processors in the system (or the part

of the system allocated to this problem).

Communication concurrency is the number of active

channels involved in message passing activities.

comm_concur = count of the number of active channels
< N X d

where N is the number of processors in the system (or the part

of the system allocated to this problem), and d is the

dimension of the system (i.e., the number of channels per

processor).

Utilization is the percent of the total number of

processors that are actively involved in program execution.

www.manaraa.com

89

concurrency
utilization = x 100%

N

where N is the number of processors in the system (or the part

of the system allocated to this problem).

Channel utilization is the percent of the total number of

channels that are actively involved in message passing

activities.

comm_concur
chan_util = x 100%

N X d
where N is the number of processors in the system (or the part

of the system allocated to this problem), and d is the

dimension of the system (i.e., the number of channels per

processor).

Balance is a measure that roughly indicates the amount of

load imbalance in the system. It is the ratio of average

computation time to the maximum of all processor computation

times. Generally, as the ratio approaches one, the

distribution of work becomes more uniform across the system.

A spatial measure based on computational energy (in bits) may

also be stated.

AVGp (comp_tm) G_comp_tmj^VQp
balance = = — < l

MAXp (comp_tm) G_comp_tmji^p

Communication balance is a measure that roughly indicates

the extent to which traffic is evenly distributed in the

system. It is the ratio of average communication time to the

maximum of all processor commmunication times. Generally, as

the ratio approaches one, the distribution of traffic becomes

more uniform across the system. A spatial measure based on

www.manaraa.com

90

communication intensity (in bits) may also be stated.

AVGp (comm_tm) G_comm_tmj^yQp
comm_bal = ; = < 1

MAXp (comm_tm) G_comia_tmjj^p

Efficiency is a measure that indicates the quality of a

parallel solution compared to a sequential solution. Two

definitions are useful. Both are ratios of computation done

on a sequential system to computation done on a parallel

system. The first, eff^, states computation in units of time;

and the second, eff^p, in units of operations. As the ratio

approaches one, the parallel system is spending more of its

time doing useful work.

eff+. =
TS Tg Tg

N'Tp N«MAXp(exec_tm) N*G_exec_tmjj^jjp

Ts Tg

SUMp(exec_tm) G_exec_tmgu^p

< 1

where N is the number of processors in the system (or the part

of the system allocated to this problem), Tg is the time that

is (or would be) required to solve the problem on a sequential

system, and Tp is the time required to solve the problem on a

parallel system.

Synergy is a measure that indicates the quality of the

mapping of the parallel program onto the parallel computer.

We want a measure that parameterizes the properties of a good

mapping: balanced load, high concurrency, and relatively low

communication overhead. There is potential conflict among

these parameters. The mapping problem is essentially an

optimization problem. Several solutions to the problem have

www.manaraa.com

91

been proposed (see the Fox and the Bokhari references), and

the typical approach minimizes or maximizes some function.

For our purposes, we choose a framework outlined in [Fox et

al., 1988].

A problem is formulated in terms of a set of processes or

objects, which are viewed as the vertices of a graph. Objects

that communicate are connected by an edge of the graph. Each

object a does work, w^^, and objects a and p need to

communicate an amount of information c^^. The parallel

computer can be described in the same form: a set of

processors and an interconnection network. A subset of

objects is allocated to each processor; let object a be at

processor p and object p be at processor q. The total amount

of work Wp for processor p and the total amount of

communication Cpg along the path from p to g can be written

Wp - S w„

Cpq "
a , P

An objective function can be defined in terms of these

variables. Though its exact form may vary depending on the

application program or computer, it typically involves

summation of work and communication values for all processors

and paths in the system.

Objective^ = f (Cpg, Wp)

We want to minimize the function over the whole system.

Minimizing the objective function corresponds to maximizing

the synergy, so we can use the reciprocal:

www.manaraa.com

92

synergy = 1 / Objective_jf

The notion of hot spots of activity in the system is

supported by the defined metrics. Informally, a hot spot is a

locale with high contention for its resources. At a hot spot,

there exists a large amount of information being processed and

a large amount of time being spent processing that

information. Both computation hot spots and communication hot

spots are possible. Using the above metrics, a hot spot

occurs when the amount of computation (or communication) at a

processor is greater than some percentage of the total amount

in the system or greater than some constant amount. Hot spots

become visually apparent via the graphics described in the

next section.

One of the powerful aspects of this approach, as we have

described it so far, is the expressiveness, flexibility, and

simplicity of applying general multivariate statistical data

analysis techniques to the performance data. Conventional

cluster analysis techniques have been used to effectively

reduce and order the data. The analysis presented in this

section is just the beginning of the possibilities for

exploring the data. For example, although the time-dependent

and position-dependent parameters are clearly relevant to

understanding system performance, dependencies with variables

other than time and position may reveal important

relationships as well. As we shall see in the following

sections, the greatest power comes from applying graphical

data analysis software for visualizing the performance data.

www.manaraa.com

93

Graphics

Without graphics, vast amounts of diverse information

cannot be easily assimilated. Visualization of data

describing program performance is becoming especially

important. Observations are more comprehensive and

immediately clearer than any that can be drawn from the data

in textual form. As discussed in Chapter IV, useful formats

for representing data depend on the data and thus on the

system that generates the data.

Of the possibilities for displaying data describing

program performance on concurrent computers, we will focus on

two formats. One format, timing profiles, is already in

common use; and the second format, data plots, is introduced

in this thesis. Both formats offer views of the basic and

derived metrics defined in preceding sections. Timing

profiles illustrate measures over time; and data plots, over

space (and time if animation is used). Timing profiles are

inherently sequential and (typically) one-dimensional in their

presentation of information. Conversely, data plots are

naturally parallel and multidimensional. Data plots encompass

several different types of plots, from which we create machine

plots developed through the course of this work. Although

certain of the basic data in the event trace may be graphed

directly, some preprocessing is typically required by the

graphical software tools. The preprocessing may involve

formatting the data and converting data into derived metrics.

www.manaraa.com

94

Plots

A general class of multivariate data plots can be

effectively tailored to display performance measurement data.

The two types of data plots most relevant to this work are

scatter plots and block plots. Scatter plots, or dot plots,

are two- or three-dimensional pictures of data. Each dot

represents an observation (or event) and denotes values for

the variables associated with the coordinate axes. Further,

the dots may be color-coded to denote the value of another

variable. Up to four variables may be displayed. Within a

dot plot, only dots representing observations of interest are

visible. Subsets of dots may be selectively highlighted or

hidden.

Block plots, or cell plots, are two-dimensional pictures

of data. By definition, a block plot corresponds to an image.

An observation is represented by a block of pixels, yielding a

two-dimensional array of blocks or cells (i.e., an image) for

a set of observations. A block denotes a value (or range of

values) for the row and column variables, and it is shaded or

color-coded to denote the value (or relative value) of a

variable of interest. Three variables may be displayed.

Within a block plot, all cells in the array are visible.

In the color-coded plots, data are often displayed with

the highest values in red and the lowest in blue, with the

display colors following the wavelengths of colors found in

the visible-light spectrum. Color is an important feature,

because it helps to visually identify trends and patterns in

data sets.

Plots are especially useful for showing system activity.

Though a data plot is completely general in the sense that any

www.manaraa.com

95

subset of performance variables may be displayed, we define a

special kind of plot. A machine plot is a special kind of

plot (either a dot or cell plot) that displays spatial and

temporal information extracted from performance measurement

data. Spatial (space- or position-dependent) data are shown

by labeling the coordinate axes with position variables.

Temporal (time-dependent) data are reflected via animation by

incrementally updating the display using a time variable.

Hence, for displaying computer system performance, dots and

cells represent processors. Processor numbers (or addresses)

are mapped to grid coordinates. Adjacency in the plots (i.e.,

adjacent dots or cells) can correspond to physical proximity

of processors within the actual machine. A dot or cell is

color-coded to indicate the value of a parameter for the

processor. The displayed parameter may be any of the

microscopic metrics defined earlier in the chapter. Thus, a

machine plot illustrates the spatial distribution of values of

a parameter over all processors. An example of each type of

plot, in template form, is shown in Figure 5.1.

This machine perspective distinguishes this approach to

presenting performance measurement data. It achieves four

essential objectives. First, in this format, a system with

hundreds to thousands of processors can be displayed at once.

A single plot is a snapshot of performance that captures the

whole system at some point in time. A sequence of plots

displays the progression of the system over time. On a high-

resolution color display, a visually striking picture is

produced. Patterns and anomalies in system performance can be

visually detected. Hot spots of activity, typically

identified as regions colored in red, are immediately

www.manaraa.com

96

Figure 5.1. Two geometric graphs, in template form, for
. . presenting performance data from a machine

perspective; a dot plot and a cell plot

www.manaraa.com

97

discernible.

Secondly, a two- or three-dimensional plot is appropriate

to accurately account for the behavior of the computer system

in both time and space. One reason that it is appropriate is

that a network of any (logical) dimension must be implemented

physically in two or three dimensions. A second reason, which

we mention again in the last chapter, is that large, fine-

grain multicomputers may require an architecture based on a

two- or three-dimensional mesh [Athas and Seitz, 1988]. That

is, a mesh will be used for both the logical network and

physical network topologies. This development is partly due

to VLSI wiring density constraints [Dally, 1987] and to

communication latency contraints of higher speed clocks.

Thirdly, a machine perspective facilitates showing the

flow or movement of granules of computation and communication

throughout the system. Thus, we emphasize both computation

and communication activities, and account not only for the

time spent in these activities but also for the space used by

these activities. Finally, a fourth point is that the format

provides a "surface" upon which we can superimpose (or

overlay) program and network graphs in order to analyze the

mapping between levels.

Plots depict spatial characteristics of performance for

the system as a whole. The macroscopic metrics, or summary

statistics, defined earlier in the chapter associate single

numerical measures with these performance pictures. Profiles,

discussed next, emphasize temporal behavior (typically at the

expense of spatial behavior).

www.manaraa.com

98

Profiles

A time-sèries profile or timing profile (sometimes called

a strip chart) depicts the value of a parameter as a function

of time. It is a simple line graph with time on the x-axis

and the parameter on the y-axis. We define two types of

timing profiles; micro-charts and macro-charts, for

displaying microscopic metrics and macroscopic metrics,

respectively. Micro-charts are useful for closer inspections

of individual processor nodes. Macro-charts show trends of

summary statistics over time. Both types of timing profiles

can be coupled with machine plots (above) to effectively

display temporal as well as spatial behavior.

Any of the metrics described in the preceding sections

can be graphed via a timing profile. A macro-chart is useful

as a pop-up window in conjunction with a plot. A plot

illustrates the value of a parameter at each processor at a

particular time, and the profile tracks values for a

corresponding global parameter over time. When animation is

invoked for the plot, the profile provides a global context

for the series of plots.

A micro-chart is useful when it is accessible via a

hierarchical selection, or zoom-in, mechanism. If more

detailed information is desired about a particular region or

processor in a displayed plot, that region or processor can be

highlighted. A profile window can then be opened for an

individual processor. Additional details about the

highlighted region can also be selected via a pull-down menu,

including information about the channels, the node, the

network, and the program.

www.manaraa.com

99

CHAPTER VI.

PROTOTYPE IHPLEHENTATION

The Dodo said to Alice; "... the best way to explain it is to
do it." First it marked out a race course, in a sort of
circle, and then all the party were placed along the course,
here and there. There was no "One, two, three, and away!",
but they began running when they liked, and left off when they
liked, so that it was not easy to know when the race was over.

Lewis Carroll, from Alice's Adventures in Wonderland

A simulation-based prototype implementation demonstrates

the feasibility of the prescribed approach for representing

performance measurement data. It is not specifically targeted

to any particular architecture or machine. Rather than using

actual instrumentation, a simulator was developed that

generates the event traces for programs executing on a

(possibly large) hypercube multicomputer. The event traces

are processed and then graphically displayed in several

formats. This chapter describes the simulation environment,

the graphics software, and the synthetic application programs.

Pictures of performance, merely frames of an animated story

detailing program performance, are shown.

Simulation

The simulation environment is a simplified version of the

fully equipped laboratory outlined in Chapter V. In most

respects, it provides the essential features of the

www.manaraa.com

100

laboratory. The simulator itself merely supports the primary

objective which is to investigate data presentation. The

choice of this objective is partly due to the need to focus on

just one aspect of this expanding area of study and to the

increasing importance of data visualization. Also, it is an

obvious one because of our presently limited parallel

computing resources. Hence, the simulator encompasses the

hypercube, the monitor, and the application program components

of the proposed laboratory. It is a minimal implementation

that yields representative event traces describing program

execution; note that we are not concerned at this time about

verifying the correctness of the simulator and event traces

with respect to an actual implementation. Our purpose is to

generate event traces with data similar to the data that would

be found in actual event traces from program execution on an

instrumented hypercube multicomputer. To this end, we have

been successful, based on comparisons with event traces from

the Seecube software package [Couch, 1988].

The simulator consists of several modules of code. At

the top-level, the user provides information about the

multicomputer and the program. A hypercube architecture is

assumed in the prototype, so all that is required as input is

the dimension of the cube. The user is given a menu of

synthetic application programs that are available in the

program library. The program library includes collective

communication routines and complete application programs.

These synthetic programs drive the simulation according to

some computation or communication paradigm. The collective

communication routines include:

www.manaraa.com

101

1-D Shift (or Rotate)
2-D Shift (or Exchange)
Broadcast
Collect
Combine (or Global Exchange)

Because of the importance of efficient communication for

multicomputers, these routines are becoming fairly standard

communication algorithms. They are documented in [Fox et al.,

1988], [Gustafson et al., 1988], and [Geist et al., 1989],

among other sources. The applications currently in the

program library include;

Quicksort (Divide and Conquer)
1-D Wave Equation (Domain Decomposition)
2-D Laplace's Equation (Domain Decompostion)
1-D Potential Energy Problem (Domain Decomposition)

The concurrent computation paradigm is noted in parentheses.

The load per processor changes logarithmically (with respect

to time) in the Quicksort application program, and it remains

constant (over time) in the other applications. In other

words, these programs have a regular structure in terms of

computation and communication. Programs with an irregular

(less predictable) structure that may require dynamic load

balancing and dynamic message routing strategies are beyond

the scope of this prototype implementation. These programs

are based on fairly standard algorithms and serve the purpose

of illustrating changing amounts of computation and

communication over time and space during program execution.

They are documented in [Fox et al., 1988] and [Gustafson et

al., 1988], among other sources.

Since the simulation is event-driven, the synthetic

programs access more basic event-specific routines. The

event-specific routines update the activities of the

www.manaraa.com

102

processors in the system as dictated by the program being

executed. The updates occur in sweeps across the system, with

each sweep advancing the local clocks on each processor. The

local clocks, though maintained individually, are synchronized

when communication-related events occur.

Figure 6.1 depicts the event-driven simulation and the

recording of events. Computation-related events change and

record the amount of work being done by each processor, and

communication-related events change and record the amount of

traffic local to each processor. The event-specific routines

also function as the monitor and include calls to logging

routines that store monitoring data when events occur. The

following activities (along with any supporting information)

are recorded in the present version; (1) idle (or no

activity), (2) compute, (3) interprocessor send, (4)

interprocessor receive, (5) wait to receive, (6) input, and

(7) output.

The event records are logged to a single trace file. In

the interests of time and storage constraints in the context

of the simulation environment of the prototype, the format of

an event record is as basic as possible. It consists of the

following fields: (1) time of event, (2) processor address,

(3) new state (or activity) resulting from the event, (4) work

(in operations), and (5) traffic (in bytes). Even with the

relatively simple programs being monitored in this prototype,

trace records are generated frequently and the trace file

grows quickly. The 1-D Wave Equation program from the library

creates a 200,000-byte file when run in its most limited form.

Trace files that we have inspected from the Seecube software

package are in excess of one million bytes [Couch, 1988].

www.manaraa.com

103

Process-related
Events

Communication-related
Events

Event Trace

Event Trace

BASIC
COMMUNICATION

PROGRAMS

COLLECTIVE
COMMUNICATION

Figure 6.1. Event-driven simulation and generation of event
records

www.manaraa.com

104

Since time and storage are required during each phase of

processing the trace file, including creation, analysis, and

display, limiting the overhead becomes important.

Although it is important in any implementation, excessive

overhead is especially noticeable in a prototype built with

modest components. An actual implementation would require a

high-performance workstation (for example, featuring a 32-bit

processor, 25 megahertz clock, and 70 megabyte hard disk) with

possible hardware support for graphics. The present setup for

the prototype implementation consists of an IBM PC/AT personal

computer (16-bit processor, 12 megahertz clock, and 20

megabyte hard disk), an Apple Macintosh-II personal computer

(color graphics), and serial communications via a host

computer (to upload and download data between the two personal

computers). The PC/AT is used as the simulation and analysis

engine, while the Mac-II is used as the graphics engine.

Simulation and analysis software is written in Pascal and runs

on the PC-AT. Preliminary versions of the graphics software

were written in Pascal for the PC/AT. However, the current

graphics software tools, described in the next section, are

commercially-available packages that run on the Mac-II.

The following steps are performed via the PC/AT to

generate monitoring data to be displayed by the graphics

software tools:

(1) Invoke the simulator.

(2) Select a synthetic program.

(3) Wait for the simulation to complete (post-processing

of measurement data).

(4) Sort the trace file according to time of event.

(5) Map the processor addresses to physical grid

www.manaraa.com

105

coordinates.

(6) Obtain any desired microscopic or macroscopic

statistics (some statistical measures may be

calculated later via the graphics software).

(7) Transform the trace file (monitoring data) and other

measurement data into the data formats required by

the graphics software tools (if needed).

(8) Transfer the data to the graphics engine.

For the mapping step, the hypercube network maps into physical

two-dimensional and three-dimensional space via a standard

gray code mapping of processor addresses to Cartesian

coordinates [Fox et al., 1988]. Alternative mapping functions

can be used, and constitute an avenue for future work. An

example of a gray code mapping is given later in this chapter.

The following steps are performed via the Mac-II to graph

the monitoring and measurement data:

(1) Capture the data from the simulation and analysis

engine.

(2) Invoke the graphics software tools and select the

desired data presentation formats.

The steps that comprise the post-processing of the event trace

are summarized in Figure 6.2.

Graphics Software

As discussed in the previous chapter, the greatest power

to evaluate program performance comes from applying graphical

data analysis software for visualizing the measurement data.

The graphics software of the prototype was selected to support

the performance data presentation needs of complex computer

www.manaraa.com

106

Event
Trace

Statistics

SORTER

ANALYZER

MAPPER

!!i!!i!H!lj'i![t!jj!!l!|-' ' M •• " I

Figure 6.2. Post-processing of an event trace

www.manaraa.com

107

systems. In particular, the two types of graphics prescribed

for pictures of performance, profiles and data plots, are

incorporated into a visual analysis tool. An example of the

graphical interface of the visual analysis tool is illustrated

in Figure 6.3.

The tool supports a hierarchical presentation of data,

which reduces the apparent complexity of system performance.

That is, the user has the opportunity to view the activity of

the system as a whole and also to selectively view the

detailed activities of individual processors. The image

window provides a global view of the system. Via a selection

mechanism, a particular processor can be highlighted. Data

specific to the highlighted processor can then be accessed via

a pull-down menu. A profile window, which plots the value of

a local performance parameter over time via a time-series

profile, may be opened for the highlighted processor. If

available, information about the portion of the program or

network associated with the processor can also be accessed.

With the current emphasis on visualizing scientific data,

we have found several graphical software packages that, when

used in combination, meet specific requirements of the visual

analysis tool. Of course, these packages are separate from

the monitoring system. In one sense that is good. It ensures

an objective view of the monitoring and measurement data (at

least beyond the collection and analysis stages) and indicates

that performance monitoring data can be treated in as general

a fashion as any other complex data set. Ideally, and

ultimately for speed and simplicity, we want the graphics to

be integrated in some way with the monitoring system.

However, the graphical software packages are more than

www.manaraa.com

108

0: (0.0)
1 1 1 1

CH> \NNELS
lime •

STATISTICS

NETWORK

PROGRAM

TRAFFIC

ACTIVITY

COMP. TIME

COMM. TIME

Figure 6.3. Graphical interface of the visual analysis tool

www.manaraa.com

109

sufficient to illustrate the kinds of data that can be

displayed, the utility of different types of data plots, and

the power of this approach to visualizing program performance.

Four graphical data analysis software packages are used

on the Mac-II. They are;

(1) StatView (Abacus Concepts Inc.)

(2) MacSpin (D^ Software Inc.)

(3) NCSA Datascope

(4) NCSA Image

NCSA is the National Center for Supercomputing Applications at

the University of Illinois, Urbana-Champaign.

These graphics tools display multivariate (numerical)

data and provide different views and options for analysis.

The first three packages accept text files of data as input.

StatView and MacSpin only require a tabular format for input

data where the table consists of labeled columns of data.

Datascope requires additional header information describing

the data and specifies a row-column spreadsheet format for the

data. Though it offers several unique functions, DataScope

primarily facilitates using Image, a graphics software package

with enhanced plotting options. Via DataScope, we can store a

data file in a specialized format called the Hierarchical Data

Format (HDF, also a product of NCSA). Image reads HDF files

but not text files.

StatView supports line and bar graphs. It is used to

create profiles of individual processor performance or system

performance over time. MacSpin is a powerful tool that

supports the data plots referred to (in Chapter V) as dot or

scatter plots. Data may be plotted in two or three

dimensions, one variable (or parameter) may be selected and

www.manaraa.com

110

used to color-code the dots, and one variable may be selected

and used for animation. MacSpin is a natural choice for

displaying the time-ordered event traces.

Image is also very powerful; it supports the data plots

referred to (in Chapter V) as cell or block plots. Within

Image, these data plots are called raster graphs. Data is

plotted in two dimensions (two independent variables), and the

value of the variable of interest (the dependent variable) is

denoted by color. Rather than drawing discrete blocks of

pixels on the screen (an option within DataScope), Image

interpolates the data via a local averaging operation to

create a smoother picture. Other plot options give

alternative representations to replace the use of color,

including contour plots, 3D plots, shaded plots, and dither

plots. Image works well to display the performance of the

system at a particular moment in time. It is especially

suited to show intensity (relative value within a range of

values) variations of some metric. The displayed variable may

be based on processor state (or activity), amount of work, or

amount of traffic, among others.

Examples of the graphs are shown in the next section when

presenting the case studies. One point is worth reiterating.

Color is often an important feature of the graphics for

visualizing data. In some cases, animation is also important.

Unfortunately, while both color and animation are easy to show

on a computer's video display screen, these features are

difficult to reproduce on paper. So, though some of the

meaning inherent in color or animation may be represented via

other forms on paper, certain qualities can only be perceived

and appreciated on screen (or possibly via color photographs

www.manaraa.com

Ill

of the screen).

Case Studies in Visualization

Post-processing of the event traces generated by the

simulator transforms measurement data into snapshots of system

performance, or system states, that can be statistically

analyzed and graphically displayed.

System configuration

For the case studies presented in this section, the

simulator is configured as an eight-dimensional (256-node)

hypercube multicomputer. Although the approach to analyzing

and visualizing program execution is independent of any

specific architecture or machine, we selected the hypercube

because of its popularity and commercial success thus far.

There is nothing magical about the number of processor

nodes, 256; smaller or larger numbers may be used. Smaller

numbers of processors result in less overhead and allow us to

inspect the trace files and evaluate whether the simulator and

synthetic programs are working as expected. However, larger

numbers of processors are the intended target. Unfortunately,

they simply result in too much overhead for the resources

comprising the prototype. Consequently, 256 processor nodes

is a good compromise. It is large enough to be interesting

(and thus requiring more sophisticated data presentation) but

not so large to be impractical.

The simulated hypercube is configured with the following

hardware parameters;

time per floating point operation = 15 microseconds

www.manaraa.com

112

time per integer operation = l microsecond

time to initiate a message transfer =400 microseconds

time per byte in a message transfer = 2 microseconds

These times are taken from an actual NCUBE hypercube machine

[Gustafson et al., 1988].

The logical network of the 256-node hypercube is mapped

onto a two-dimensional grid (physical network) using a

standard gray code mapping operation [Fox et al., 1988].

Figure 6.4 illustrates this mapping for the simplified case of

an eight-processor (three-dimensional) hypercube. Processor

numbers in the logical network are associated with grid

coordinates in the physical network and are assigned to grid

positions. For the 256-node hypercube, the assignment of

logical processor numbers to locations in the grid is

specified in Figure 6.5. Observe that Processor 0 is mapped

to the lower left cell at location (0,0). Its hypercube

neighbors reside either in row 0 or in column 0, and include

processor numbers 1, 2, 4, 8, 16, 32, 64, and 128, as

illustrated. Also observe that hypercube nearest neighbors

may not be physically near neighbors.

The following five synthetic programs from the program

library are studied in this section.

Broadcast

Collect

1-D Shift (or Rotate)

Quicksort

1-D Wave Equation

The first three programs implement collective communication

algorithms. Recall, collective communication is communication

in which all processor nodes in the system concurrently

www.manaraa.com

113

t

4 5 7 6

0 1 3 2

X. 0

Figure 6.4. Mapping a three-dimensional (eight-node)
hypercube onto a two-dimensional grid (gray code
mapping)

www.manaraa.com

114

t

15:

14:

13:

12:

11:

10:

9:

8:

7:

6:

5:

4:

3:

2:

1:

0:

(^129 131 130 134 135 133 132 140 141 143 142 138 139 137 136

144 145 147 146 150 151 149 148 156 157 159 158 154 155 153 152

176 177 179 178 182 183 181 180 188 189 191 190 186 187 185 184

160 161 163 162 166167 165 164 172 173 175 174 170 171 169 168

Z24 225 227 226 230 231 229 228 236 237 239 238 234 235 233 232

240 241 243 242 246 247 245 244 252 253 255 254 250 251 249 248

108 209 211 210 214 215 213 212 220 221223 222 218 219 217 216

92 193 195 194 198 199 197 196 204 205 207 206 202 203 201 200

^65 67 66 70 71 69 68 76 77 79 78 74 75 73 72

80 81 83 82 86 87 85 84 92 93 95 94 90 91 89 88

12 113 115 114 118 119 117 116 124 125 127 126 122 123 121 120

96 97 99 98 102 103 101 100 108 109 III 110 106 107 105 104

^33 35 34 38 39 37 36 44 45 47 46 42 43 41 40

48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56

\17 19 18 22 23 21 20 28 29 31 30 26 27 25 24

3 {D 6 7 5 (4)12 13 15 14 10 11 9O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X

Figure 6.5. Assignment of processor addresses for an eight-
dimensional (256-node) hypercube to locations in
a two-dimensional (16x16) grid (gray code
mapping)

www.manaraa.com

115

interact in message-passing activities to achieve some degree

of global exchange of information. The last two programs are

applications, involving computational as well as communication

activities. Each program was executed by the simulator to

obtain an event trace file. For the case studies, we have

primarily reconstructed a sequence of system states via

snapshots of system performance at particular times.

Observations, or event records, resulting from each

simulation were categorized according to a distribution of ten

uniform time intervals spanning the execution time of the

simulation. Snapshots of system performance were created at

particular times during each time interval in direct

proportion to the number of observations recorded for the time

interval. The objective was to capture and illustrate the

salient aspects of performance via representative snapshots

while minimizing the time, storage, and computational effort

involved. Selected statistical and graphical representations

of performance are reported.

Broadcast communication procrreun

Broadcast is a collective communication routine in which

one node receives data from the host computer and initiates a

distribution of this data to all other nodes. A common

broadcast algorithm distributes the data using a tree-like

processor communication graph. The basic operation of

Broadcast is graphically depicted in Figure 6.6. For

illustrative purposes, it is shown for the simplified case of

an eight-node hypercube. Processor 0, the top node of the

broadcast tree, initiates the broadcast by sending messages to

its hypercube neighbors. Note that the simpler eight-

www.manaraa.com

116

processor system is used to illustrate functionality, while

the 256-processor system is the subject system in the

simulations and is used to illustrate the visual analysis

tool.

In the simulation, performed on a 256-node hypercube, a

100-byte message was broadcast among the processors. Table

6.1 categorizes the observations (event records) resulting

from the simulation according to a distribution of ten uniform

time intervals. The computation-related events are recorded

when processors have completed their portion of the broadcast

and indicate the availability of the processors to do work.

The communication-related events include interprocessor send

and receive operations and processor waits.

Selected global statistics for the system are documented

in Tables 6.2 through 6.4. Table 6.2 is a key for the other

tables, pairing global statistics with identifying alphabetic

characters. Table 6.3 corresponds to snapshot number 6 (of

12) at time 0.0072 seconds. Table 6.4 corresponds to snapshot

number 10 (of 12) at time 0.0144 seconds. Local statistics

can be calculated for individual processors. Tables 6.5

through 6.7 document selected local statistics for two

processors at particular times. Table 6.5 is a key for the

other tables, pairing local statistics with identifying

alphabetic characters. Processor 0 is detailed in Table 6.6,

and Processor 100, in Table 6.7.

Images of program execution (generated by NCSA Image) are

depicted in Figures 6.7 through 6.21. Figures 6.7 through

6.17 comprise an eleven-frame animated sequence of program

states, corresponding, respectively, to the following snapshot

times (in milliseconds): 0.9, 1.8, 3.6, 5.4, 7.2, 9, 10.8,

www.manaraa.com

117

Figure 6.6. Basic operation of Broadcast on an eight-node
hypercube

www.manaraa.com

118

BROADCAST COLLECT

Number of events: 1017 Number of events: 1758
Total simulation time: 0.018 sec. Total simulation time; 0

Distribution of events: Distribution of events

Period A B C Period A B C
0 0.0000 1 261 0 0.0000 192 863
1 0.0018 4 20 1 0.0021 32 242
2 0.0035 12 43 2 0.0042 16 161
3 0.0054 26 71 3 0.0063 8 80
4 0.0072 40 90 4 0.0084 0 59
5 0.0090 43 84 5 0.0105 4 33
6 0.0108 52 90 6 0.0126 0 26
7 0.0126 42 65 7 0.0147 2 15
8 0.0144 23 30 8 0.0168 0 13
9 0.0162 10 10 9 0.0189 1 11

QUICKSORT 1-D WAVE

Number of events: 1785
Total simulation time: 0.031 sec.

Number of events: 6110
Total simulation time: 0.1 sec.

Distribution of events: Distribution of events:

Period A B C Period A B G
0 0 .0000 1 0 0 0.00 51 424
1 0 .0031 0 0 1 0.01 181 324
2 0 .0062 1 2 2 0.02 98 734
3 0. .0093 0 0 3 0.03 170 808
4 0, .0124 2 3 4 0.04 105 859
5 0, ,0155 9 13 5 0.05 157 703
6 0, ,0186 82 98 6 0.06 6 691
7 0, ,0217 162 164 7 0.07 0 632
8 0, ,0248 162 158 8 0.08 0 130
9 0. 0279 91 72 9 0,09 0 37

A - Starting time for time period (seconds)
B — Number of computation-related events
C - Number of communication-related events

Table 6.1. Simulation results for the case studies

www.manaraa.com

119

A : Cumulative work (operation count)

B ; Number of computational periods

C : Current work (operations)

D : Cumulative computation time (seconds)

E : Computational power (operations per second)

F : Execution rate (operations per second)

G : Percent of total time spent computing

H : Cumulative traffic (byte count)

I : Message count

J : Current traffic (byte count)

K : Cumulative communication time (seconds)

L : Communication flow (bytes per second)

M : Percent of total time spent communicating

H : Cumulative wait time (seconds)

0 ; Percent of total time spent waiting

P : Fraction of communication time spent waiting

Q : Communication overhead (communication : computation)

R : Kularlty factor (operations of work per byte of traffic)

S ; Number of channels in use

1 : Percent of channels used (channel utilization)

II ; Processor activity distribution (*)

V ; Processor activity distribution (%)

W : Processor concurrency (#), utilization (%)

X : Channel concurrency (#), utilization (%)

Y : Computational balance for time, operations

Z : Communication balance for time, bytes

-M, Mega or 10®; -K, Kilo or 10®

Table 6.2. Key for global statistics

www.manaraa.com

120

Execution time - 0.0072 seconds

Sum (Total) Average Maximum

H 7250 28 800

I 73 0 8

J 2000 8 100

K 0.2732 0.00107 0.0072

L 929 K 8.3 K 211 K

M 14.82% 19.14% 100%

N - - 0.0072

0 - - 100%

S 35 0.14 4

T 0.8545% 0.8545% 25%

SOHE COMPUTE SUP WAIT RCV

U 0 49 9 187 11

V 0.00 19.14 3.52 73.05 4.30 %

H 256 100.00%

X 35 0.85%

Z 0.1482 0.0354

Table 6.3. Broadcast routine. Selected global statistics for
snapshot number 6 taken at 0.0072 seconds

www.manaraa.com

121

Execution time - 0.014 seconds

Sura (Total) Average Maximum

a 23400 91 800

I 234 1 8

J 4600 16 100

K 2.1272 0.00831 0.014

L 60S K 21 K 211 K

M 59.35% 85.94% 100%

N 2.0848 0.00814 0.014

0 58.17% 80.55% 100%

P 0.9801 0.7553 1.0

S 55 0.21 4

T 1.3428% 1.3428% 25%

HOWE COMPUTE SNP WAIT RCV

U 0 187 25 23 21

V 0.00 73.05 9.77 8.98 8.20 %

W 256 100.00%

X 55 1.34%

Z 0.5935 0.1143

Table 6.4. Broadcast routine. Selected global statistics for
snapshot number 10 taken at 0.0144 seconds

www.manaraa.com

122

A : Snapshot sequence number

B : Time of snapshot (seconds)

C : Execution time of processor (seconds)

D : Action (O-NOHE, 1-COMPUIE, 2-SEHD, 3-WAIT, 4-HECEIVE, 5-IHPUT, 6-OUIPUT)

E : Cumulative work (operation count)

F : Number of computational periods

G : Current work (operation count)

H : Cumulative computation time (seconds)

I : Computational power (rate of doing work, operations per second)

J : Throughput (execution rate, operations per second)

K : Percent of total time spent computing

L : Cumulative local traffic (byte count)

M : Number of messages for interprocessor connunication

N : Current local traffic (byte count)

0 ; Cumulative comminication time (seconds)

P : Communication flow (rate of transferring messages, bytes per second)

Q : Percent of total time spent communicating

R : Cumulative wait time (seconds)

S : Percent of total time spent waiting

T : Fraction of communication time spent waiting

U : Connunication overhead (connunication : computation)

V : Granularity factor (operations of work per byte of traffic)

W : Channel count (number of channels used)

X : (Hiannel utilization (fraction of channels used)

Table 6.5. Key for local statistics

www.manaraa.com

123

A B c D L M N 0 P 0 R s I M X

1 0.0000 0 .0000 2 0 0 0 0.0000 0.0 b 0.0000

2 0.0009 0 ,0006 2 100 1 100 0.0000 - 0.00 0.0 0.0 1 0.0625

3 0.0018 0, .0018 2 400 4 100 0.0000 - 0.00 0.0 0.0 4 0.2500

4 0.0036 0. .0034 1 800 8 100 O.OQOO - 0.00 0.0 0.0 a 0.5000

12 0.0180 0 .0038 1 800 8 0 0.0038 2.11E+05 100.00 0.0 0.0 0.0 - -

Table 6.6. Broadcast routine. Selected local statistics for
Processor 0, (x,y) = (0,0)

www.manaraa.com

124

A B C D L M N 0 P Q R S T W X

6 0.0072 0. .0000 4 0 0 0 0. .0000 0.00 0.0000 0.00 0 0.0000

7 0.0090 0. .0088 2 200 2 100 0. .0000 - 0.00 0.0082 93.18 2 0.1250

12 0.0180 0. .0096 1 300 3 0 0. .0096 3.12E+04 100.00 0.0082 85.42 0.8542 2 0.1250

Table 6.7. Broadcast routine. Selected local statistics for
Processor 100, (x,y) = (7,4)

www.manaraa.com

125

12.6, 14.4, 16.2, and 18. The displayed parameter represents

the cumulative amount of local traffic, in number of bytes,

resulting from message passing activities (sends and receives)

of the processor at the indicated time. In these dither

plots, lightness denotes relatively low intensity (small)

values of the displayed parameter and darkness, high intensity

(large) values.

Observe how the traffic of the broadcasted message

spreads throughout the system. It is apparent that Processor

0 and its hypercube neighbors, especially those neighbors at

the higher levels of the broadcast tree, account for the

largest amounts of traffic. The region surrounding Processor

255 is void of any traffic until the end of the simulation,

since it is the last node to receive the broadcasted message.

Figure 6.18 shows an alternative type of image, a three-

dimensional plot. The actual grid is shown and the third

dimension portrays the displayed parameter. This image

represents the same program state information as the image in

Figure 6.15. Three additional images of program execution at

14.4 milliseconds are depicted in Figures 6.19 through 6.21.

In Figure 6.19, the displayed parameter is the cumulative

amount of time spent by the processor in communication

activities (sends, receives, and waits). Similarities between

Figure 6.19 and Figure 6.15 can be observed. The differences

arise primarily because processor waits are reflected in

Figure 6.19 and show up as higher intensity regions in the

image. These regions consist of processors residing at the

interior nodes in the broadcast tree. Figure 6.20 illustrates

the cumulative amount of time spent in processor waits.

Finally, processor activity at the snapshot time is displayed

www.manaraa.com

126

Figure 6.7. Picture of performance (dither plot): Broadcast,
ss#2 at 0.9 msec., cumulative traffic (bytes)

www.manaraa.com

127

Figure 6.8. Picture of performance (dither plot); Broadcast,
ss#3 at 1.8 msec., cumulative traffic (bytes)

www.manaraa.com

128

Figure 6.9. Picture of performance (dither plot): Broadcast,
ss#4 at 3.6 msec., cumulative traffic (bytes)

www.manaraa.com

129

Figure 6.10. Picture of performance (dither plot): Broadcast
ss#5 at 5.4 msec., cumulative traffic (bytes)

www.manaraa.com

130

ÎHfeàHrffhHtHj:

'K¥:¥:

Figure 6.11. Picture of performance (dither plot): Broadcast,
ss#6 at 7.2 msec., cumulative traffic (bytes)

www.manaraa.com

131

#g

lïnAnfwTnT* îLOzpzuw:::;:::;:::'
îiaaaH£+:

Figure 6.12. Picture of performance (dither plot); Broadcast
ss#7 at 9 msec., cumulative traffic (bytes)

www.manaraa.com

132

ixmâjHéi:

gsl
2ZKt' fcH-K+:
m

Figure 6.13. Picture of performance (dither
ss#8 at 10.8 msec., cumulative

plot): Broadcast
traffic (bytes)

www.manaraa.com

133

iSÊs!
a#

Figure 6.14. Picture
ss#9 at

of performance (dither
12.6 msec., cumulative

plot): Broadcast,
traffic (bytes)

www.manaraa.com

134

'âi+i-':¥:

Figure 6.15. Picture of performance (dither plot): Broadcast,
ss#10 at 14.4 msec., cumulative traffic (bytes)

www.manaraa.com

135

II
'MU

M
•

Figure 6.16. Picture of performance (dither plot); Broadcast,
ss#ll at 16.2 msec., cumulative traffic (bytes)

www.manaraa.com

L

136

0

Figure 6.17. Picture of performance (dither plot);
ss#12 at 18 msec., cumulative traffic

Broadcast,
(bytes)

www.manaraa.com

137

in Figure 6.21. Black denotes computational activity; gray,

communication activity; and white, no activity.

Collect communication program

Collect is a collective communication routine in which

one node receives data from all other nodes and sends the data

to the host computer. A common collect algorithm transfers

the data using a tree-like processor communication graph. The

basic operation of Collect is graphically depicted in Figure

6.22. For illustrative purposes, it is shown for the

simplified case of an eight-node hypercube. Processor 0, the

top node of the collect tree, receives messages from all other

nodes via its hypercube neighbors.

In the simulation, performed on a 256-node hypercube, a

100-byte message was collected from the processors. Table 6.1

categorizes the observations (event records) resulting from

the simulation according to a distribution of ten uniform time

intervals. The computation-related events are recorded when

processors have completed their portion of the collect and

indicate the availability of the processors to do work. The

communication-related events include interprocessor send and

receive operations and processor waits.

Selected global statistics for the system are documented

in Tables 6.2, 6.8, and 6.9. Table 6.2 is a key for the other

tables. Table 6.8 corresponds to snapshot number 8 (of 17) at

time 0.00315 seconds. Table 6.9 corresponds to snapshot

number 15 (of 17) at time 0.0168 seconds. Local statistics

can be calculated for individual processors. Tables 6.5,

6.10, and 6.11 document selected local statistics for two

processors at particular times. Table 6.5 is a key for the

www.manaraa.com

138

Figure 6.18. Picture of performance (3D plot): Broadcast,
ss#10 at 14.4 msec., cumulative traffic (bytes)

www.manaraa.com

139

ma#

Figure 6.19. Picture of performance (dither plot); Broadcast,
ss#10 at 14.4 msec., cumulative communication
time

www.manaraa.com

140

Figure 6.20. Picture of performance (dither plot): Broadcast,
ss#10 at 14.4 msec., cumulative wait time

www.manaraa.com

141

Figure 6.21. Picture of performance (dither plot): Broadcast,
ss#10 at 14.4 msec., processor activity (black:
computing; gray: communicating? white: none)

www.manaraa.com

Figure 6.22. Basic operation of Collect on an eight-node
hypercube

www.manaraa.com

143

other tables. Processor 0 Is detailed in Table 6.10, and

Processor 100, in Table 6.11.

Images of program execution (generated by NCSA Image) are

depicted in Figures 6.23 through 6.29. Figures 6.23, 6.24,

and 6.29 display the cumulative amount of local traffic, in

number of bytes, resulting from message passing activities

(sends and receives) of the processor at the indicated time.

The first of these three images corresponds to a state of the

system near the beginning of the simulation; the second image,

near the middle; and the third image, near the end. Very

definite patterns can be observed. The vertical shaded

regions roughly correspond to levels in the collect tree. It

is apparent that nodes at the higher levels account for the

largest amounts of traffic. By the end of Collect, hot spots

of traffic are found at Processor 0 and its hypercube

neighbors at the higher levels of the collect tree.

Figure 6.25 shows a three-dimensional image that

represents the same program state information as the image in

Figure 6.24. Three additional images of program execution at

a snapshot time of 3.15 milliseconds are depicted in Figures

6.26 through 6.28. In Figure 6.26, the displayed parameter is

the cumulative amount of time spent by the processor in

communication activities (sends, receives, and waits).

Similarities between Figure 6.26 and Figure 6.24 can be

observed. Figure 6.27 illustrates the cumulative amount of

time spent in processor waits. Finally, processor activity at

the snapshot time is displayed in Figure 6.28. Black denotes

computational activity; gray, communication activity; and

white, no activity.

www.manaraa.com

L_

1

144

Execution time • 0.003 seconds

Sum (Total) Average Maximum

B 35150 137 600

I 352 1 6

J 3200 13 ioo

K 0.2368 0.00093 0.003

L 28.4 M 204 K 250 K

M 30.83% 87.5% 100%

N 0.0778 0.0003 0.0024

0 10.13% 13.06% 85.71%

P 0.3285 0.0844 0.6

S 190 0.75 6

T 4.6631% 4.6631% 37.5%

NONE COMPUTE SND WAIT RCV

U 0 224 8 15 9

V 0.00 87.5 3.13 5.86 3.52

W 256 100.00%

X 191 4.66%

Z 0.3083 0.2288

Table 6.8. Collect routine. Selected global statistics for
snapshot number 8 taken at 0.00315 seconds

www.manaraa.com

145

Execution time = 0.016 seconds

Sum (Total) Average Maximum

H 49450 193 3000

I 495 2 30

J 600 2 100

K 0.458 0.00179 0.015

L 6.59 M 226 K 250 K

M 11.18% 99.22% 100%

N 0.1424 0.00056 0.008

0 3.48% 12.95% 60%

F 0.3109 0.1257 0.6

S 61 0.24 3

T 1.4893% 1.4893% 18.75%

SOKE COMPUTE SND WAIT RCV

U 0 250 4 11

V 0.00 97.66 1.56 0.39 0.39 %

W 256 100.00%

X 61 1.49%

Z 0.1193 0.0644

Table 6.9. Collect routine. Selected global statistics for
snapshot number 15 taken at 0.0168 seconds

www.manaraa.com

146

A B C D L M N R S

2 0.00035 0. .0000 4 0 0 0 0, .00000

3 0.00070 0. .0004 3 100 1 100 0. .00040 100 .00

5 0.00140 0. .0010 4 200 2 100 0. .00040 40 .00

7 0.00210 0. .0016 4 300 3 100 0. ,00040 25 .00

8 0.00315 0. .0028 4 500 5 100 0. .00160 57, .14

g 0.00420 0. .0040 4 700 7 100 0, ,00280 70, .00

10 0.00630 0. ,0058 4 1000 10 100 0. ,00340 58, .62

11 0.00840 0. 0082 4 1400 14 100 0. ,00460 56, .10

12 0.01050 0. ,0100 4 1700 17 100 0. ,00580 58, .00

13 0.01260 0. 0120 3 2100 21 100 0. 00580 48. .33

14 0.01470 0. 0140 4 2400 24 100 0. 00680 48. .57

15 0.01680 0, ,0160 4 2700 27 100 0. ,00780 48, .75

16 0.01890 0, ,0180 4 3100 31 100 0. ,00780 43. ,33

17 0.02100 0. ,0210 3 3600 36 100 0. ,00980 46. .67

Table 6.10. Collect routine. Selected local statistics for
Processor 0, (x,y) = (0,0)

www.manaraa.com

147

A B C D L M N O P Q R S

2 0 .00035 0.0000 4 100 1 100 - - 0 .0000

3 0, .00070 0.0004 3 200 2 100 - 0 .0000 0.0

5 0. ,00140 0.0010 2 300 3 100 - 0, .0006 60.0

6 0. .00175 0.0016 3 400 4 100 - 0. ,0006 37.5

7 0. ,00210 0.0020 2 500 5 100 - 0, ,0006 30.0

17 0. 02100 0.0030 1 600 G 0 0.003 2.00E+05 100.00 0. 0006 20.0

Table 6.11. Collect routine. Selected local statistics for
Processor 100, (x,y) = (7,4)

www.manaraa.com

L

148

Figure 6.23. Picture of performance (dither plot);
ss#2 at 0.35 msec., cumulative traffic

Collect,
(bytes)

www.manaraa.com

L

149

F&T-i&T-

"zWurzcE l5I»2?j7I»jCT

'•d *0532
:+:$:+:+H= :+;+:+:+:-H! +:+M-:+ni

-H-PfH-W:

AKAM
t-rH-H -in M izpiizoïi:

IT'TITÎT'TI .+.+.+.+.-fci H+t+C+H-t-i+Pr

?A%ZA B+:+1+î+:w maagB
ttfeSSriqi

:+:•}• Ms-t+R iTtn±ba2
iH+:+w-:-H+hi 3Wt^K-Hri
H+:+yvi-:-wr W-a#*#;:" ?r%ZR2

+.4*.+I+.*îa •i-I+'+î+rP

a-i+f+z-H+w amiiiiqŒ STîTiTiTi gTiXiXj

nihi+nhi? ESZbwiZCOZ!

mÈM':

Figure 6.24. Picture of performance (dither plot):
ss#8 at 3.15 msec., cumulative traffic

Collect,
(bytes)

www.manaraa.com

L

150

Figure 6.25. Picture of performance (3D plot): Collect,
ss#8 at 3.15 msec., cumulative traffic (bytes)

www.manaraa.com

L

151

SÏTV +

J#
a$:$X':+ aaz &ira+:;K-:::+:->:+ m

•i-r-Htfiîs
•wb

_

'tgaî

g:'

$=

8in}+:+
'••'•4

•i-i+îras

f

Figure 6.26. Picture of performance (dither plot); Collect,
ss#8 at 3.15 msec., cumulative communication
time

www.manaraa.com

152

zsaflÇSfiysBsrai:

#@e ##=
li-jlBfe:

Figure 6.27. Picture of performance (dither plot): Collect,
ss#8 at 3.15 msec., cumulative wait time

www.manaraa.com

153

Figure 6.28. Picture of performance (dither plot); Collect,
ss#8 at 3.15 msec., processor activity (black:
computing; gray; communicating; white; none)

www.manaraa.com

154

m

w

ra'soHnEscimz':

jggicaanrrnT
azuzt

pzozozcŒaz::.::

Jgjn2g|a||2

- 5

iszoxm:

Figure 6.29. Picture of performance (dither plot): Collect,
ss#l5 at 16.8 msec., cumulative traffic (bytes)

www.manaraa.com

155

Shift communication program

Shift is a collective communication routine in which

processors transfer data around a ring of processors. For a

one-dimensional shift right, each processor sends data to its

right neighbor and receives data from its left neighbor. The

basic operation of Shift is graphically depicted in Figure

6.30. For illustrative purposes, it is shown for the

simplified case of an eight-node hypercube. In the

simulation, performed on a 256-node hypercube, a 100-byte

message was shifted by the processors.

Four images of program execution (generated by NCSA

Image) are depicted in Figures 6.31 through 6.34. The

displayed parameter in Figure 6.31, corresponding to snapshot

number 4 (of 16) at time 0.7 (of 7) milliseconds, is

cumulative time spent waiting by a processor. Processors that

are highlighted in this image are in the receive phase of the

shift algorithm and have spent time waiting, while the other

processors are in the send phase of the algorithm. The images

in the next three figures correspond to snapshot number 12 (of

16) at 4.2 (of 7) milliseconds. Figure 6.32 illustrates

processor activity. Black denotes computational activity;

gray, communication activity; and white, no activity. Recall

that computational activity is recorded when processors have

completed their portion of the shift and indicate the

availability of the processors to do work. The displayed

parameters in Figures 6.33 and 6.34 are, respectively,

cumulative amount of time spent by the processor in

communication activities (sends, receives, and waits); and

cumulative amount of time spent waiting by a processor.

www.manaraa.com

Figure 6.30. Basic operation of Shift on an eight-node
hypercube

www.manaraa.com

157

•as

Figure 6.31. Picture of performance (dither plot): Shift,
ss#4 at 0.7 msec., cumulative wait time

www.manaraa.com

158

Figure 6.32. Picture of performance (dither plot): Shift,
ss#12 at 4.2 msec., processor activity (black:
computing; gray: communicating; white: none)

www.manaraa.com

Figure 6.33. Picture of performance (dither plot): Shift,
ss#12 at 4.2 msec., cumulative communication
time

www.manaraa.com

160

Figure 6.34. Picture of performance (dither plot): Shift,
ss#12 at 4.2 msec., cumulative wait time

www.manaraa.com

161

The collective communication programs spawn communication

activities and generate message traffic in the system in some

pattern. We may observe the flow or movement of communication

quanta, as evidenced by images of processor activity, and we

may also observe amounts of communication. These algorithms

are typically used within larger application programs. Then,

in addition to the traffic from the communication routines,

there is work being done by the computational kernel of the

application program. Thus, we may observe the flow or

movement of computation quanta (if any occurs), and we may

also observe amounts of work being done. This is illustrated

via the following two case studies.

Divide-emd-concpaer quicksort procrram

Quicksort is an application program that uses a divide-

and-conquer approach to sorting a list of numbers. One

processor begins with the original list, divides the list in

half, keeps half of the list, and sends half of the list to a

neighboring processor. This continues recursively using a

tree-like processor communication graph until all processors

have a list. Each processor locally sorts its list. The

basic operation of Quicksort is graphically depicted in Figure

6.35. For illustrative purposes, it is shown for the

simplified case of an eight-node hypercube. Processor 0, the

top node of the quicksort tree, initially has the original

list.

www.manaraa.com

Figure 6.35. Basic operation of Quicksort on an eight-node
hypercube

www.manaraa.com

163

In the simulation, performed on a 256-node hypercube, a

4096-byte list was sorted on the processor ensemble. Table

6.1 categorizes the observations (event records) resulting

from the simulation according to a distribution of ten uniform

time intervals.

Selected global statistics for the system are documented

in Tables 6.2, 6.12, and 6.13. Table 6.2 is a key for the

other tables. Table 6.12 corresponds to snapshot number 10

(of 17) at time 0.0227 seconds. Table 6.13 corresponds to

snapshot number 15 (of 17) at time 0.0279 seconds. Local

statistics can be calculated for individual processors.

Tables 6.5, 6.14, and 6.15 document selected local statistics

for two processors at particular times. Table 6.5 is a key

for the other tables. Processor 0 is detailed in Table 6.14,

and Processor 100, in Table 6.15.

Images of program execution (generated by NCSA Image and

MacSpin) are depicted in Figures 6.36 through 6.48. Figures

6.36 through 6.39 are images of program states at 0.0227

seconds (snapshot number 10}. The displayed parameters are,

respectively, cumulative amount of work, in number of

operations, done by the processor at the indicated time;

cumulative amount of time spent by the processor in

computation activities (i.e., doing work); cumulative amount

of time spent by the processor in communication activities

(sends, receives, and waits); and processor activity. In

Figure 6.39, black denotes computational activity; gray,

communication activity; and white, no activity.

Figures 6.42 through 6.46 are images of program states at

0.0279 seconds (snapshot number 15). The displayed parameters

are identical to those presented for snapshot number 10.

www.manaraa.com

164

Execution time - 0.022 seconds

Sum (Total) Average Maximum

A 23728 93 8176

B 147 1 9

C 368 1 64

D 0.0416 0.00016 0.0136

E 8.56 M 20.6 K 1.02 M

F 1.08 M 4.38 K 409 K

G 0.74% 0.77% 68%

B 10576 41 4080

I 85 0 8

J 2016 8 512

K 0.0658 0.00026 0.006

L 4.02 M 34.4 K 1.2 M

M 1.17% 1.19% 27.27%

Q 1.5817 0.0522 3.0

R 2.2436 0.2559 2.0039

S 25 0.098 1

T 0.61% 0.61% 6.25%

NONE COMPUTE SUP WAIT RCT

U 216 15 7 0 18

V 84.38 5.86 2.73 0.00 7.03 X

H 40 15.63%

X 25 0.61%

Y 0.0119 0.0113

Z 0.0428 0.0101

Table 6.12. Quicksort program. Selected global statistics
for snapshot number 10 taken at 0.02273 seconds

www.manaraa.com

165

Execution time - 0.027 seconds

Sum (Total) Average Maximum

A 34592 135 8176

B 419 2 9

C 960 4 64

D 0.0726 0.00028 0.0136

E 20 M 42.2 K 2.03 M

F 1.28 M 5.86 K 409 K

G 1.05% 1.22% 68%

B 15576 61 4080

I 219 1 8

J 704 3 128

K 0.1728 0.00068 0.006

L 2.25 M 54.1 K 1.2 M

M 2.5% 2.82% 27.27%

Q 2.3802 0.1283 5.0

R 2.2209 0.7946 2.0039

S 25 0.098 2

I 0.61% 0.61% 12.5%

NONE COMPUTE SND WAIT RCV

U 190 42 6 0 18

V 74.22 16.41 2.34 0.00 7.03 Z

W 66 25.78%

X 25 0.61%

Y 0.0209 0.0165

Z 0.1125 0.0149

Table 6.13. Quicksort program. Selected global statistics
for snapshot number 15 taken at 0.0279 seconds

www.manaraa.com

166

A B c D £ F G H I J K

3 0 .0062 0 .0000 2 4096 1 4096 0.0000

S 0, .0124 0 .0086 2 6144 2 2048 0.0082 7, ,49E+05 7.14E+05 95.35

6 0. .0155 0 .0150 1 7168 3 0 0.0126 5. ,69E+05 4.78E+05 84.00

7 0, .0186 0 .0180 2 8064 6 0 0.0136 5. .93E+05 4.48E+05 75.56

17 0, 0310 0 .0200 0 8176 9 0 0.0136 6. , OlE+05 4.09E+05 68.00

L M N 0 P Q R S T U V W X

0 0 0 0.0000 0.0 0 0.0000

2048 1 0 0.0004 5. .12E+06 4.65 0.0 0.0 0 .0 0.0488 3.0 0 0.0000

3584 3 0 0.0004 8. CD 1

2.67 0.0 0.0 0 .0 0.0317 2.0 0 0.0000

4032 6 64 0.0014 2. .88E+06 7.78 0.0 0.0 0 .0 0.1029 2.0 1 0.0625

4080 8 0 0.0034 1. .20E+06 17.00 0.0 0.0 0 .0 0.2500 2.0 1 0.0625

Table 6.14. Quicksort program. Selected local statistics for
Processor 0, (x,y) = (0,0)

www.manaraa.com

167

A B C D E F G H I J K

8 0.02015 0.000 4 0 0 0 0.000

9 0.02170 0.021 0 32 1 32 0.000 - 1.52E+03 0.00

17 0.03100 0.022 0 48 2 0 0.001 4.80E+04 2.18E+03 4.55

L M H W X

0 0 0 0 . 0 - - 0 . 0

32 1 0 0.0 - 0.0 0.0 0.0 -

48 2 0 0.0 - 0.0 0.0 0.0 - 0 . 0

0 0 . 0

1.0 0 0.0

1.0 0 0.0

Table 6.15. Quicksort program. Selected local statistics for
Processor 100, (x,y) = (7,4)

www.manaraa.com

168

Figure 6.43 shows a three-dimensional image that represents

the same program state information as the image in Figure

6.42.

By comparing snapshot number 10 with snapshot number 15,

observe how the work emanates from Processor 0 into the rest

of the system. Most of the work is localized around Processor

0, as might be expected. In fact, because the length of the

original list is small compared to the size of the system

(only sixteen numbers remain to be sorted on each processor),

we see that the bulk of the system has relatively little work

to do. Viewing the snapshots of processor activity, we can

observe the spread of activity in the system (as Processor 0

distributes work to its hypercube neighbors) and also the mix

of computational and communication activities.

Figures 6.40, 6.41, 6.47, and 6.48 are dot plots of

program activity generated by MacSpin. As in the images, a

two-dimensional, 16x16 grid of processors is created. Visible

dots denote active processors, and thus this format presents a

visual display of concurrency and system utilization. Figures

6.40 and 6.41 correspond to snapshot number 10, and Figures

6.47 and 6.48, to snapshot number 15. Two different modes of

observability are used. In Figures 6.40 and 6.47, all

processors recording activity in the window of time spanning

the initial time through the snapshot time are visible.

Alternatively, in Figures 6.41 and 6.48, only those processors

recording activity in the window of time spanning one percent

below the snapshot time to one percent above the snapshot time

are visible. In the former case, cumulative activity is

presented; and in the latter case, (nearly) instantaneous

activity is presented. Observe the similarities between

www.manaraa.com

169

Figures 6.39 and 6.40 and between Figures 6.46 and 6.47.

Finally, another type of data plot can be generated by

MacSpin that shows both temporal and spatial activity of the

system via a single plot. An event space-time profile

displays the distribution of events over time across all

processors. Event profiles are depicted in Figures 6.49

through 6.53. Time is displayed on the horizontal axis,

ranging from 0 seconds through the total execution time (here,

0.031 seconds). Processor addresses are displayed on the

vertical axis, ranging from address 0 through address 255. A

dot denotes the occurrence of an event at the indicated time

on the indicated processor. In Figure 6.49, all types of

events are shown as dots. In Figure 6.50, activity-related

events are marked with "x". In Figures 6.51 through 6.53,

computing, sending, and receiving events, respectively, are

marked with "x". Note in Figure 6.52 how easily we can

observe that only half of the processors perform send

operations in Quicksort.

One-dimensional wave equation procrram

1-D Wave is an application program that uses a domain

decomposition approach to solving the wave equation in one

dimension using a finite difference method [Fox et al., 1988].

The problem domain (here, linear) is divided equally among all

processors; that is, each processor is allocated the same

number of points in the discretized domain. All processors

are broadcast an initial set of data and then iteratively

converge to a solution. Each iteration consists of a

communication step followed by a computation step. The

communication step involves an exchange of endpoint data

www.manaraa.com

L.

170

Figure 6.36. Picture of performance (dither plot); Quicksort,
ss#10 at 22.7 msec., cumulative work
(operations)

www.manaraa.com

L

171

Figure 6.37. Picture of performance (dither plot): Quicksort,
ss#10 at 22.7 msec., cumulative computation time

www.manaraa.com

172

Figure 6.38. Picture of performance (dither plot): Quicksort,
ss#10 at 22.7 msec., cumulative communication
time

www.manaraa.com

173

iïflPà

iifihinKÈ;

Figure 6.39. Picture of performance (dither plot); Quicksort,
ss#10 at 22.7 msec., processor activity (black:
computing; gray: communicating; white; none)

www.manaraa.com

174

Figure 6.40. Picture of performance (dot plot): Quicksort,
at 23 msec., cumulative activity

www.manaraa.com

175

Figure 6.41. Picture of performance (dot plot): Quicksort,
at 23 msec., instantaneous activity

www.manaraa.com

176

I « I. I »«»«»«»,« «
:::.: ::::::

Figure 6.42. Picture of performance (dither plot): Quicksort,
ss#15 at 27.9 msec., cumulative work
(operations)

www.manaraa.com

177

6.43 . Picture ot^

www.manaraa.com

178

: : ::::::::::::::::: : '
: •

i:::-;:.::::::': : - : « « • « • •
I '::::::::::::::::::::::::::::

Figure 6.44. Picture of performance (dither plot): Quicksort,
ss#15 at 27.9 msec., cumulative computation time

www.manaraa.com

179

mi:!

+H'+ + •!•}•}•-r

iilSIII «:%D5hltj:'±h»n:':-;

•••••r-t-r-WHs 4M-PH-:

!#

^^0

#0

WKWr+:+

..Wft jiass xnJSHHSi-snfc:

#0

T.i?xri

: :':::;::^g|pz^:%::'

mm —gxmSZ::':::;::::::::

«

m

J* b

*
x+Hîiîlfir

XX:. ~-"A"+

Figure 6.45. Picture of performance (dither plot); Quicksort
ss#15 at 27.9 msec., cumulative communication
time

www.manaraa.com

180

Figure 6.46. Picture of performance (dither plot); Quicksort,
ss#15 at 27.9 msec./ processor activity (black:
computing; gray; communicating; white; none)

www.manaraa.com

181

Figure 6.47. Picture of performance (dot plot); Quicksort
at 28 msec., cumulative activity

www.manaraa.com

182

Figure 6.48. Picture of performance (dot plot): Quicksort,
at 28 msec., instantaneous activity

www.manaraa.com

183

Address

. : • • . : I ;

I . •

: i l I i ;
. •.niiiiiil!

Time

Figure 6.49. Event space-time profile: Quicksort. Time: 0
31 msec.. Addresses: 0 - 255, • : event

www.manaraa.com

184

X X X _ X W X
X II

Figure 6.50. Event space-time profile: Quicksort. Time: o -
31 msec.. Addresses; 0 - 255, x : activity event

www.manaraa.com

185

-A

Figure 6.51. Event space-time profile; Quicksort. Time: 0
31 msec.. Addresses: 0 - 255, x : compute event

www.manaraa.com

186

islijiii:

Figure 6.52. Event space-time profile: Quicksort. Time: 0
31 msec., Addresses; 0 - 255, x ; send event

www.manaraa.com

187

X

i
•r
gr-
y •
jr

C*«C

iiii
11

. * ? î
n-.
I : •

Figure 6.53. Event space-time profile: Quicksort. Time: 0 -
31 msec.. Addresses: 0 - 255, x : receive event

www.manaraa.com

188

values between processors via shift left and shift right

collective communication routines. The final results from all

processors are collected and sent to the host.

In the simulation, performed on a 256-node hypercube,

each processor was assigned 100 points of the problem domain.

Table 6.1 categorizes the observations (event records)

resulting from the simulation according to a distribution of

ten uniform time intervals.

Selected global statistics for the system are documented

in Tables 6.2 and 6.16 through 6.19. Table 6.2 is a key for

the other tables. Table 6.16 corresponds to snapshot number 4

(of 37) at time 0.01 seconds; Table 6.17, snapshot number 12

at time 0.03 seconds; Table 6.18, snapshot number 23 at time

0.052 seconds; and Table 6.19, snapshot number 36 at 0.09

seconds. Local statistics can be calculated for individual

processors. Tables 6.5, 6.20, and 6.21 document selected

local statistics for two processors at particular times.

Table 6.5 is a key for the other tables. Processor 0 is

detailed in Table 6.20, and Processor 100, in Table 6.21.

Images of program execution (generated by NCSA Image) are

depicted in Figures 6.54 through 6.63. Figures 6.54 and 6.55

correspond to snapshot number 4 at 0.01 seconds. The

displayed parameters are, respectively, processor activity and

cumulative amount of time spent by the processor in

communication activities (sends, receives, and waits). By

comparing these images with those for Broadcast, we can

observe that broadcasting activities are dominating program

execution early in the simulation.

www.manaraa.com

189

Execution time - 0.01 seconds

Sum (Total) Average Maximum

A 65000 254 1000

B 65 0 1

C 63000 246 1000

F 6.5 M 33.8 K 357 K

H 40400 158 3200

I 101 0 8

J 14000 55 400

K 0.5264 0.00206 0.01

I 4.07 M 31.8 K 727 K

M 20.56% 25.39% 100.00%

N - 0.00286 0.01

0 28.64% 32.08% 100.00%

P - 0.1959 0.92

R 1.6089 0.4096 2.5

S 53 0.21 6

T 1.29% 1.29% 37.5%

HONE COMPUTE SHD WAIT RCV

U 0 63 10 158 25

V 0.00 24.61 3.91 61.72 9.77 %

H 256 100.00%

X 53 1.29%

Y - 0.25

Z 0.2055 0.0493

Table 6.16. 1-D Wave
snapshot

program. Selected global statistics for
number 4 taken at 0.01 seconds

www.manaraa.com

190

Execution time - 0.03 seconds

Sum (Total) Average Maximum

A 434000 1695 3000

B 345 1 2

C 211000 824 2000

D 2.1616 0.00844 0.0154

E 28.5 H 80.1 K 205 K

F 14.5 M 67.2 K 130 K

G 28.15% 29.76% 66.96%

H 103048 403 3216

I 517 2 12

J 6396 25 400

K 3.9114 0.01528 0.03

L 6.01 M 56.6 K 309 K

M 50.93% 65.69% 100.00%

N 3.2512 0.0127 0.024

0 42.33% 55.52% 96%

P 0.8312 0.8313 -

Q 1.8095 0.4894 1.0

R 4.2116 2.8185 7.2115

S 230 0.89 5

T 5.566% 5.566% 31.25%

NOUE COMPUTE SHD WAIT RCV

U 0 142 SO 33 ' 31

V 0.00 55.47 19.53 12.89 12.11 Z

H 256 100.00%

X 228 5.57%

Y 0.5483 0.5651

Z 0.5093 0.1252

Table 6.17. 1-D Wave program. Selected global statistics for
snapshot number 12 taken at 0.03 seconds

www.manaraa.com

191

Execution time ~ 0.052 seconds

Sum (Total) Average Maximum

A 1251000

B 673

C 353000

D 5.6266

E 27.3 M

F 24.1 M

G 42.27%

H 105642

I 1166

J 520

K 6.338

L 4.22 M

M 47.61%

N 3.838

0 28.83%

P 0.6055

Q 1.1265

R 11.8419

S 250

T 6.18%

4887 6000

3 3

1379 3000

0.02198 0.0304

216 K 411 K

101 K 146 K

45.4% 72.2%

413 3232

5 16

2 4

0.02476 0.052

36.3 K 182 K

51.12% 100%

0.01499 0.033

31.03% 63.48%

0.6482

1.138 2.4667

7.9323 13.8889

0.99 5

6.18% 31.25%

RONE COMPUTE SHD WAIT RCV

U 0 123 52 32 49

V 0.00 48.05 20.31 12.50 19.14 %

H 256 100.00%

X 253 6.18%

Ï 0.7230 0.8145

Z 0.4761 0.1277

Table 6.18. 1-D Wave program,
snapshot number 23

Selected global statistics for
taken at 0.052 seconds

www.manaraa.com

192

Execution time = 0.09 seconds

Sum (Total) Average Maximum

A 1536000 6000 6000

B 768 3 3

C 0 0 0

D 8.2966 0.03241 0.0454

E - 209 K 411 K

F 17.1 H 87 K 103 K

G 36.01* 47.35% 78.28%

H 302896 1183 14832

I 1771 7 45

J 102400 400 400

K 7.2294 0.02824 0.057

L 45.6 M 95.7 K 899 K

M 31.38% 40.46% 78.08%

N 4.3962 0.01717 0.053

0 19.08% 24.41% 72.6%

P 0.6081 0.6535 -

Q 0.8714 1.0778 3.8

R 5.071 4.6558 7.2115

S 1100 4.3 -

T 26.56% 26.56% -

ROUE COMPUTE SSD WAIT RCV

U 0 0 253 2 1

V 0.00 0.00 98.83 0.78 0.39 %

W 256 100.00%

X 1088 26.56%

Ï 0.7138 1.0

Z 0.4954 0.0798

www.manaraa.com

193

A B C D E F G H I J K

1 0 .00000 0 .0000 2 0 0 0 0.0000

2 0 .00333 0 .0032 2 0 0 0 0 .0000 - 0 .OOE+00 0.00

6 0 .01667 0 .0044 2 1000 1 1000 0 .0000 - 2 .27E+05 0.00

8 0 .02200 0 .0200 2 1000 1 0 0 .0146 6 .85E+04 5 .OOE+04 73.00

g 0 .02400 0 .0240 1 1000 1 0 0 .0146 6 .85E+04 4 .17E+04 60.83

16 0 .03800 0 .0250 2 3000 2 0 0 .0146 2 .05E+05 1 .20E+05 58.40

17 0 .04000 0, .0400 2 3000 2 0 0. ,0146 2. ,05E+05 7. ,50E+04 36.50

25 0 .05600 0, .0420 3 6000 3 0 0. ,0146 4, ,llE+05 1, ,43E+05 34.76

26 0. ,05800 0. .0570 4 6000 3 0 0. ,0146 4, ,llE+05 1. ,05E+05 25.61

27 0, .06000 0. .0590 4 6000 3 0 0. .0146 4. . llE+05 1. .02E+05 24.75

28 0. .06250 0. 0620 3 6000 3 0 0. .0146 4. .llE+05 9. .68E+04 23.55

29 0. .06500 0. 0650 4 6000 3 0 0, 0146 4, , llE+05 9. ,23E+04 22.48

30 0. .06750 0. ,0670 3 6000 3 0 0.0146 4. .llE+05 8. .95E+04 21.79

31 0. .07000 0. 0700 3 6000 3 0 0. 0146 4. , llE+05 8, .57E+04 20.86

32 0. .07250 0. 0710 4 6000 3 0 0. 0146 4. llE+05 8. 45E+04 20.56

33 0. 07500 0.0750 3 6000 3 0 0. 0146 4. llE+05 8. OOE+04 19.47

34 0. 07750 0. 0770 4 6000 3 0 0. 0146 4. llE+05 7. 79E+04 18.96

35 0. 08000 0. 0800 3 6000 3 0 0. 0146 4. llE+05 7. 50E+04 18.25

36 0. 09000 0. 0890 3 6000 3 0 0.0146 4. llE+05 6. 74E+04 16.40

37 0. 10000 0. 0990 3 6000 3 0 0. 0146 4. llE+05 6. 06E+04 14.75

L M « 0 e 1 Q R S T U V

0 0 0 0 .0000 0 .000 .

2400 6 400 0 .0000 - 0 .00 0 .000 0 .00 - - 0 .0000

3200 8 0 0 .0044 7 .27E+05 100 .00 0 .000 0 .00 0.0000 - 0. ,3125

3204 9 4 0.0044 7 .28E+05 22 .00 0 .000 0 .00 0.0000 0.3014 0, .3121

3212 11 4 0 .0044 7 .30E+05 18 .33 0 .004 16 .67 0.9091 0.3014 0. ,3113

3216 12 4 0 ,0104 3 .09E+05 41 .60 0 ,004 16 .00 0.3846 0.7123 0. .9328

3220 13 4 0, ,0104 3. ,lOE+05 26 .00 0. ,004 10. .00 0.3846 0.7123 0. .9317

3232 16 4 0. .0274 1. ,18E+05 65 .24 0. .005 11, ,90 0.1825 1.8767 1, .8564

3232 16 4 0. .0274 1, ,18E+05 48 .07 0, ,005 8. ,77 0.1825 1.8767 1. .8564

3632 17 400 0. .0274 1. ,33E+05 46 ,44 0. 022 37, ,29 0.8029 1.8767 1. ,6520

4432 19 400 0. .0274 1, .62E+05 44. ,19 0. .023 37. .10 0.8394 1.8767 1. ,3538

5632 22 400 0. ,0274 2. .06E+05 42. ,15 0. ,025 38. .46 0.9124 1.8767 1. 0653

6032 23 400 0. ,0274 2. 20E+05 40. .90 0, ,027 40. .30 0.9854 1.8767 0. 9947

7232 26 400 0. 0274 2. ,64E+05 39. .14 0, ,029 41, .43 1.0584 1.8767 0.8296

7632 27 400 0. ,0274 2. 79E+05 38. .59 0, ,030 42. .25 1.0949 1.8767 0. 7862

8832 30 400 0, ,0274 3. ,22E+05 36. .53 0.031 41. .33 1.1314 1.8767 0. 6793

9632 32 400 0. 0274 3. ,52E+05 35. ,58 0. 031 40. ,26 1.1314 1.8767 0. 6229

10432 34 400 0. 0274 3. 81E+05 34. ,25 0. 034 42. 50 1.2409 1.8767 0. 5752

13632 42 400 0. 0274 4. 98E+05 30. 79 0. 038 42. 70 1.3869 1.8767 0. 4401

16832 50 400 0. 0274 6. 14E+05 27. ,68 0. 044 44, 44 1.6058 1.8767 0. 3565

Table 6.20. 1-D Wave program. Selected local statistics for
Processor 0, (x,y) = (0,0)

www.manaraa.com

194

A B C D E F G B I J 1 K L

3 0.00667 0.000 4 0 0 0 0 .000 0

4 0.01000 0.010 2 0 0 0 0 .000 - 0 .OOE+00 0 .00 400

10 0.02600 0.012 3 1000 1 0 0 .000 - 8 .33E+04 0 .00 1200

11 0.02800 0.028 2 1000 1 0 0 .000 - 3 .57E+04 0 .00 1208

12 0.03000 0.029 1 1000 1 0 0, .000 3, .45E+04 0 .00 1212

19 0.04400 0.031 2 3000 2 0 0, .000 g. .68E+04 0 .00 1216

20 0.04600 0.046 4 3000 2 0 0, .000 6, .52E+04 0 .00 1220

21 0.04800 0.048 1 3000 2 0 0. .000 6, .25E+04 0. .00 1232

28 0.06250 0.049 2 6000 3 3000 0, .000 1. .22E+05 0. .00 1232

29 0.06500 0.064 4 6000 3 0 0. ,015 4 .OOE+05 g. 37E+04 23. .44 1632

30 0.06750 0.067 4 6000 3 0 0. 015 4 .OOE+05 8. 1

22. .39 2032

37 0.10000 0.070 2 6000 3 0 0. 015 4 .00E+05 8. 57E+04 21. 43 3632

M H 0 P 0 R S T U V

0 0 0 .000 0 .000

1 400 0 .000 - 0.00 0 .010 100 .00 - 0 .0000

3 400 0 .012 1 .OOE+05 100.00 0 .010 83 .33 0 .8333 - 0 .8333

5 4 0, .012 1 .OlE+05 42.86 0 .010 35 .71 0 .8333 - 0 .8278

6 4 0, .012 1 .OlE+05 41.38 0 .010 34 .48 0 .8333 - 0 .8251

7 4 0, .031 3, .92E+04 100.00 0 .012 38 .71 0 .3671 - 2 .4671

8 4 0. .031 3. (D
 1

67.39 0. .012 26 .09 0 .3871 - 2. .4590

11 4 0, 031 3. .97E+04 64.58 0. .013 27 .08 0 .4194 - 2. .4351

11 0 0. 049 2. .51E+04 lOD.OO 0. 014 28. .57 0, .2857 - 4. 8701

12 400 0. 049 3. 33E+04 76.56 0. 014 21. .88 0, .2857 3.2667 3. 6765

13 400 0. 049 4. 15E+04 73.13 0. 016 23. 88 0, .3265 3.2667 2. 9528

17 400 0. 049 7. 41E+04 70.00 0. 018 25. 71 0. .3673 3.2667 1. 6520

Table 6.21. 1-D Wave program. Selected local statistics for
Processor 100, (x,y) = (7,4)

www.manaraa.com

195

Figure 6.54. Picture of performance (dither plot): ID Wave,
ss#4 at 10 msec., processor activity (black:
computing; gray: communicating; white: none)

www.manaraa.com

196

laiilfTi;

ÎI!jH¥-

Figure 6.55. Picture of
ss#4 at 10

performance (dither plot): ID Wave,
msec., cumulative communication time

www.manaraa.com

197

Figures 6.56 through 6.58 correspond to states of the

system at 0.03 seconds (snapshot number 12). The displayed

parameters are, respectively, processor activity, cumulative

amount of time spent by the processor in computation

activities, and cumulative amount of time spent by the

processor in communication activities (sends, receives, and

waits). The displayed parameters in Figures 6.59 through

6.61, at 0.052 seconds (snapshot number 23), are identical to

those presented for snapshot number 12.

We can observe some recurring patterns in these images,

however many of the specific features are yet to be explored.

Indeed, these are complex states of the system! We are

currently speculating on the application of fractal methods to

characterize the complexity of such images. Observe the

complementary relationship between Figures 6.57 and 6.58 and

between Figures 6.60 and 6.61: dark regions in one correspond

to light regions in the other. This is a result of the

regular, symmetric properties of 1-D Wave. At a particular

instant in time, processors that have spent a relatively large

amount of time communicating have necessarily spent a

relatively small amount of time computing.

Finally, Figures 6.62 and 6.63 depict cumulative

computation time and cumulative communication time,

respectively, near the end of program execution (snapshot

number 36 at 0.09 seconds). An interesting feature to note

here is that the variations among the processors have

diminished. That is, there appears to be greater balance in

the system; this observation is supported by the global

statistics reported in Table 6.19.

www.manaraa.com

198

Figure 6.56. Picture of performance (dither plot): ID Wave,
ss#12 at 30 msec., processor activity (black:
computing; gray; communicating; white: none)

www.manaraa.com

199

i+Mâj

|sÇs95Ç.?

Figure 6.57. Picture of performance (dither plot): ID Wave,
ss#12 at 30 msec., cumulative computation time

www.manaraa.com

200

Figure 6.58. Picture of performance (dither plot): ID Wave,
ss#l2 at 30 msec., cumulative communication time

www.manaraa.com

201

Figure 6.59. Picture of performance (dither plot): ID Wave,
ss#23 at 52 msec., processor activity (black:
computing; gray: communicating; white: none)

www.manaraa.com

L_

202

Figure 6.60. Picture of performance (dither plot): ID Wave,
5s#23 at 52 msec., cumulative computation time

www.manaraa.com

Figure 6.61. Picture of performance (dither plot): ID Wave,
ss#23 at 52 msec., cumulative communication time

www.manaraa.com

204

Figure 6.62. Picture of performance (dither plot): ID Wave,
ss#36 at 90 msec., cumulative computation time

www.manaraa.com

205

Figure 6.63. Picture of performance (dither plot): ID Wave,
ss#36 at 90 msec., cumulative communication time

www.manaraa.com

206

chapter vii.

discussion and conclusions

I think of a computer display as a window on Alice's
Wonderland in which a programmer can depict either objects
that obey well-known natural laws or purely imaginary objects
that follow laws he has written into his program. Through
computer displays I have landed an airplane on the deck of a
moving carrier, observed a nuclear particle hit a potential
well, flown in a rocket at nearly the speed of light and
watched a computer reveal its innermost workings.

Ivan Sutherland [Sutherland, 1970]

Future Work

The most obvious direction for future work is to go

beyond a prototype. While much work would be required to

transform the prototype into a fully configured laboratory,

the implementation is sufficient to indicate that there are no

insurmountable problems. Equally important, it points to the

potential of the approach, particularly the general treatment

of measurement data and the use of the data plots, for

visualizing program performance on concurrent computers.

Based on our experiences with the prototype, we can prescribe

with greater accuracy the ideal features of the tools and

laboratory.

Another fairly obvious direction is the extension of this

approach with the appropriate features so that it may be

integrated into a complete parallel programming environment.

www.manaraa.com

207

possibly in support of visual programming [Shu, 1988]. A

shorter term goal would be the inclusion of mechanisms for

real-time processing of event data, which is important for

program debugging.

The approach may offer new insights into the problem of

mapping a parallel algorithm onto an underlying parallel

machine. It provides a framework to investigate the effects

of using different topologies (particularly different

dimensions) at the program, network, and machine levels of

concurrent computing. For example, we can compare performance

measurements resulting from executing programs on different

architectures. This topic is discussed further in the next

section.

A few less obvious, but potentially fruitful, directions

for future work relate to the following areas:

(1) image algebra,

(2) hypergraphics [Cluff, 1988],

(3) cellular automata models [Wolfram, 1984] and [Toffoli

and Margolus, 1987], and

(4) chaos and fractals [Gleick, 1988] and [Zorpette,

1988].

within the context of our approach, image algebra operations

may be an alternative to conventional techniques for

calculating summary statistics. The computational methods for

image algebra can then be applied to the analysis of

performance measurement data. For example, recall that the

summary statistic for the average operation count of the

system at time T may be defined as:

op_cnt^YQp = SUMp (op_cnt) / Np at t=T

The SUMp function adds values of opcnt from all processors at

www.manaraa.com

208

time T. Np is the number of processors. Alternatively, let A

be an image at time T, in which the cells are assigned values

for the parameter opcnt. Let I be the identity image (i.e.,

all ones). Then we may use the dot product operation (•) to

define the average operation count at time T:

op_cnt;^yQp = A.I / Np at t=T

Extensions to hypergraphics presentation techniques and

tools that explicitly support the display of performance

measurement data from event traces may be appropriate. The

dot plots, or scatter plots, that were used (generated by

MacSpin) are a type of hypergraph. Although cumulative

activity and instantaneous activity could be displayed,

current activity (i.e., the most recent event occurrences) was

not easily displayed.

Cellular automata models are similar in form to the cell

plots. If they are also similar in function, they may prove

to be useful for modeling concurrent computation at an

abstract level.

Finally, fractals (or fractal geometry) may offer a way

to describe the (possibly) irregular shapes apparent in the

data plots. There is a recent trend toward modeling complex

systems using fractals. A distinctive feature of most

fractals is self-similarity, that is, similar patterns on

different scales or levels. At a low level, we may not be

concerned with patterns; however, at a high level, we are

concerned with patterns. Typically, there is some sort of

boundary between order at the top level and chaos at the

bottom level. In complex systems, that boundary between order

and chaos tends to be a fractal. So fractals offer a kind of

measurement as to where chaos may end and order (or control)

www.manaraa.com

209

may begin.

A Question of Dimension

In several instances throughout the course of this work,

issues regarding dimension have been raised. Dimension was

introduced in Chapter I as a property of complex systems and

defined as the number of connections from a member of a

complex system to its neighboring members. We are faced with

questions of dimension when we are investigating the logical

and physical networks of nodes in a computer system.

The dimension of the physical network is constrained

within the three dimensions of physical space. In addition to

topology, the geometry of the interconnections becomes a

consideration. However, familiar Euclidean metrics may not be

applicable to performance measurements if communication is

restricted to orthogonal paths in the system. Performance

measurements may need to be stated in terms of "taxicab

metrics" [Hillis, 1985].

The mapping of the logical network onto the physical

network necessarily places limitations on the topology and

dimension of the logical network. For the logical network

alone (i.e., considered in isolation), the greater its

dimension, the greater its ability to support communication

among the nodes. Unfortunately, greater dimensions result in

wiring and timing problems for the physical network. Thus, at

one extreme, we have large dimension hypercubes, which have

nice logical properties. And at the other extreme, we have

small dimension meshes, which have nice physical properties.

The best logical network is still to be determined. It is

www.manaraa.com

210

quite possible that a "compound hypercube" network (composed

of moderate dimension hypercubes of hypercubes, and so forth)

would have the best combination of logical and physical

properties. That is, it would avoid the wiring problems of

large "dimension hypercubes, yet be more effective for

communications than a strictly nearest-neighbor mesh [Basore,

personal correspondence, 1989]. Interestingly, the fractal

nature of a compound hypercube network may be an important

aspect of its performance.

Finally, although a gray code mapping scheme was used to

assign processors in the logical network to locations in the

physical network, an optimal scheme is yet to be determined.

Optimal may mean minimizing the length or the density of

wires, among other criteria. The tradeoffs between different

mapping schemes need to be investigated in order to identify

the most important criteria. Our work should facilitate an

evaluation of different mapping schemes. The criteria can

then be used (by either hardware or algorithm designers) to

configure a system for effective and efficient operation.

Research Contributions

This work has resulted in several important contributions

to research relating to program performance on multicomputers.

We emphasize visualization of performance measurement data.

More importantly, we recognize that different computer systems

may require different formats for representing performance

data. Also, we propose to treat performance data in the sense

of general multivariate data and apply the techniques and

tools of multivariate data analysis for analyzing and

www.manaraa.com

211

displaying the data. However, we can customize our approach

since performance data is specialized because of its temporal

and spatial characteristics.

The idea of a machine perspective, outlined in Chapters

III through V and illustrated in Chapter VI, distinguishes our

approach to presenting measurement data. The two- and three-

dimensional data plots introduced to graphically represent

program performance are unique in this area. Using this

format, a system with hundreds or thousands of processors can

be displayed at once. Other graphical representations

currently in use do not easily support a system having a large

number of processors, particularly a global or macroscopic

view of the system. In particular, the development of images

of program states is a novel contribution and presents

numerous opportunities for future study. Also, a two- or

three-dimensional plot is appropriate to accurately account

for the behavior of the computer system in both time and

space. It facilitates showing the flow or movement of

granules of computation and communication throughout the

system. Thus, we emphasize both computation and communication

activities, and account not only for the time spent in these

activities but also for the space used by these activities.

The metrics that we defined capture the computation and

communication information in meaningful ways. An objective of

this work was to effectively couple qualitative observations

and quantitative measurements of the system into a coherent

representation of performance.

Finally, we have developed a framework in which to study

patterns in program execution. Patterns are visual and offer

insight into the behavior of concurrent algorithms and the

www.manaraa.com

212

systems that execute them. Using appropriate tools, we can

view the system as a whole as well as focus our attention on

particular parts of the system, as dictated by an interesting

or unusual feature within an image. Closer inspections that

include details about the program and machine can reveal the

innermost workings of the system. For example, we might find

that an algorithm behaves poorly because it generates too much

traffic at a particular location in the system at a particular

time. Or we might find that a faulty processor is causing

inefficiences.

Furthermore, we are only beginning to understand the

importance of structure in concurrent computing; the

structure of the problem, the program, the network, and the

machine, and the relationship among these structures. The

view of performance that we have developed should be a useful

tool for investigating these structures.

www.manaraa.com

213

BIBLIOGRAPHY

Abraham, S., Gottlieb, A., and Kruskal, C. "Simulating
Shared-Memory Parallel Computers." Ultracomputer Note
No. 70, New York University, April 1984.

Agha, G. Actors; A Model of Concurrent Computation in
Distributed Systems. Cambridge, MA: MIT Press, 1986.

Agrawal, D., Janakiram, V., and Pathak, G. "Evaluating the
Performance of Multicomputer Configurations." IEEE
Computer, 19, No. 5 (May 1986): 23-37.

Athas, W. and Seitz, C. "Multicomputers: Message-Passing
Concurrent Computers." IEEE Computer, 21, No. 8 (August
1988): 9-23.

Babb, R. G. and Di Nucci, D. C. "Design and Implementation of
Parallel Programs with Large-Grain Dataflow." In The
Characteristics of Parallel Algorithms, edited by
Jamieson, Gannon, and Douglass. Cambridge, MA: MIT
Press, 1987.

Backus, John. "Can Programming Be Liberated from the Von
Neumann Style? A Functional Style and Its Algebra of
Programs." Communications of the ACM, 21, No. 8 (1978):
613-641.

Barasch, L., Lakshmivarahan, S., and Dhall, S. "Generalized
Gray Codes and their Properties." Proceedings of the
Third International Conference on Supercomputing, Vol.
III. New York: IEEE, 1988.

Barnes, G., Brown, R., Katz, M., Kuck, D., Slotnick, D., and
Stoker, R. "The Illiac-IV Computer." IEEE Transactions
on Computers C-17 (1968): 746-757.

Barnsley, M. Fractals Everywhere. Boston: Academic Press,
1988.

Batcher, K. E. "Design of a Massively Parallel Processor."
IEEE Transactions on Computers, C-29, No. 9 (1980); 100-
115.

Beetem, J., Denneau, M., and Weingarten, D. "The GFll
Supercomputer." Proceedings of the Twelfth Annual
Symposium on Computer Architecture. New York: IEEE,
1985.

www.manaraa.com

214

Bell, C. G. and Newell, A. Computer Structures; Readings and
Examples. New York: McGraw Hill, 1971.

Herman, F. "Experience with an Automatic Solution to the
Mapping Problem." In The Characteristics of Parallel
Algorithms, edited by Jamieson, Gannon, and Douglass.
Cambridge, MA: MIT Press, 1987.

Bokhari, S. H, Assignment Problems in Parallel and
Distributed Computing. Boston: Kluwer Academic
Publishers, 1987.

Borodin, A. "On Relating Time and Space to Size and Depth."
SIAM J. Computing. 6, No. 4 (1977): 733-744.

Brandis, R. C. "IPPM: Interactive Parallel Program Monitor."
M.S. thesis, Oregon Graduate Center, August 1986.

Brantley, W., McAuliffe, K., and Weiss, J. "RP3 Processor-
Memory Element." Proceedings of the 1985 International
Conference on Parallel Processing. Washington, D.C.;
IEEE Computer Society Press, 1985.

Brown, Marc H. "Exploring Algorithms Using Balsa-II." IEEE
Computer, 21, No. 5 (May 1988): 14-36.

Burks, A. W. "Programming and Structure Changes in Parallel
Computers." Lecture Notes in Computer Science 111
(1981): 1-23.

Buzen, J. P. "Fundamental Operational Laws of Computer System
Performance." Acta Informatica, 7, No. 2 (1976): 167-
182.

Campbell, R. H. and Reed, D. A. "Tapestry: Unifying Shared
and Distributed Memory Parallel Systems." Technical
Report No. TTR88-1. Dept. of Computer Science, Univ. of
Illinois, August 1988.

Carroll, Lewis. Alice's Adventures in Wonderland. Stamford,
CT: Longmeadow Press, 1988. (Original publication, 1865)

Chandy, K. and Lamport, L. "Distributed Snapshots:
Determining Global States of Distributed Systems." ACM
Transactions on Computer Systems 3 (February 1985): 63-
75.

Cluff, E. "A Characteri z at ion and Categorization of Higher
Dimensional Presentation Techniques." M.S. thesis. Dept.
of Computer Science, Brigham Young University, 1988.

www.manaraa.com

215

Couch, A. "Graphical Representations of Program Performance
on Hypercube Message-Passing Multiprocessors." Ph.D.
dissertation, Department of Computer Science, Tufts
University, April 1988.

Couch, A. "Problems of Scale in Displaying Performance Data
for Loosely-Coupled Multiprocessors." Proceedings of the
Fourth Conference on Hypercubes, Concurrent Computers,
and Applications. New York: ACM, 1989.

Crowther, W. "Performance Measurements on a 128-Node
Butterfly Parallel Processor." Proceedings of the 1985
International Conference on Parallel Processing, 531-540.
Washington, D.C.: IEEE Computer Society Press, 1985.

Dally, William J. A VLSI Architecture for Concurrent Data
Structures. Boston: Kluwer Academic Publishers, 1987.

Deshpande, S. R., Jenevein, R. M., and Lipovski, G. J. "TRAC:
An Experience with a Novel Architectural Prototype."
TRAC Report. University of Texas, Austin, TX, 1985.

Dijkstra, E. W. "Solution of a Problem in Concurrent
Programming." Communications of the ACM 8 (1965): 569-
570.

Einstein, E. "A Tool to Aid in Mapping Computational Tasks
to a Hypercube." Proceedings of the Fourth Conference on
Hypercubes, Concurrent Computers, and Applications. New
York: ACM, 1989.

Enslow, P. "Multiprocessing Organization - A Survey."
Computing Surveys, 9, No. 1 (1977): 103-129.

Flanders, P. M. "Efficient High Speed Computing with the
Distributed Array Processor." In High Speed Computer and
Algorithm Organization, edited by Kuck, Lawrie, and
Sameh, 113-127. New York: Academic Press, 1977.

Flower, J. "NDB and PM: Debugging and Performance Tools for
the Parallel Programmer." Proceedings of the Fourth
Conference on Hypercubes, Concurrent Computers, and
Applications. New York: ACM, 1989.

Flynn, M. J. "Very High-Speed Computing Systems."
Proceedings of the IEEE 54 (1966): 1901-1909.

Fox, G , , Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and
Walker, D. Solving Problems on Concurrent Processors.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

www.manaraa.com

216

Frenkel, K. "Evaluating Two Massively Parallel Machines."
Communications of the ACM, 29, No. 8 (1986): 752-758.

Fujimoto, R. "Simon: A Simulator of Multicomputer Networks."
Report No. UCB/CSD 83/136. Electronics Research Lab,
University of California, Berkeley, 1983.

Gajski', Daniel D., and Peir, Jih-Kwon. "Essential Issues in
Multiprocessor Systems." IEEE Computer, 18, No. 6
(June 1985); 9-27.

Geist, G. "A Machine-Independent Communication Library."
Proceedings of the Fourth Conference on Hypercubes,
Concurrent Computers, and Applications. New York; ACM,
1989.

Gelernter, D. "Programming for Advanced Computing."
Scientific American, 257, No. 4 (October 1987): 91-98.

Gleick, J. Chaos; Making a New Science. New York; Viking,
1987.

Gottlieb, A. and Schwartz, J. T. "Networks and Algorithms for
Very Large Scale Computation." IEEE Computer, 15, No. 1
(January 1982); 27-36.

Gottlieb, A., Grishman, R., Kruskal, C., McAuliffe, K.,
Rudolph, L., and Snir, M. "The NYU Ultracomputer -
Designing an MIMD Shared Memory Parallel Computer." IEEE
Transactions on Computers C-32 (1983): 175-189.

Gustafson, J., Montry, G., and Benner, R. "Development of
Parallel Methods for a 1024-Processor Hypercube." SIAM
Journal on Scientific and Statistical Computing, 9, No. 4
(July 1988); 609-638.

Hayes, J., Mudge, T., Stout, Q., Colley, S., and Palmer, J.
"A Microprocessor-based Hypercube Supercomputer." IEEE
Micro, 6, No. 5 (October 1986); 6-17.

Haynes, L. S., Lau, R. L., Siewiorek, D. P., and Mizell, D. W.
"A Survey of Highly Parallel Computing." IEEE Computer,
15, No. 1 (January 1982): 9-24.

Hewitt, C. "Viewing Control Structures as Patterns of Passing
Messages." Artificial Intelligence, 8, No. 3 (1977);
323-364.

Hillis, W. D. "New Computer Architectures and Their
Relationship to Physics, or Why Computer Science is No
Good." International Journal of Theoretical Physics,
21, No. 3/4 (1982): 255-262.

www.manaraa.com

217

Hillis, W. D. "The Connection Machine: A Computer
Architecture Based on Cellular Automata." Physica
lOD (1984): 213-228.

Hillis, W. D. The Connection Machine. Cambridge, MA; MIT
Press, 1985.

Hillis, W. D., and Steele, G. L. "Data Parallel Algorithms."
Communications of the ACM. 29, No. 12 (1986): 1170-1183.

Holland, J. H. "A Universal Computer Capable of Executing an
Arbitrary Number of Subprograms Simultaneously."
Proceedings of the 1959 E.J.C.C. (1959); 108-113.

Hopfield, J. and Tank, D. "Computing with Neural Circuits; A
Model." Science 233 (August 8, 1986); 625-632.

Hwang, K., and Briggs, F. A. Computer Architecture and
Parallel Processing. New York: McGraw-Hill, 1984.

Jamieson, L., Gannon, D., and Douglass, R., eds. The
Characteristics of Parallel Algorithms. Cambridge, MA:
MIT Press, 1987.

Jaynes, E. T. "Information Theory and Statistical Mechanics."
Physical Review 106 (1957); 620-630.

Keyes, R. W. "Physical Problems and Limits in Computer
Logic." IEEE Spectrum 6 (1969): 36-45.

Keyes, R. W. "Physical Limits in Digital Electronics."
Proceeding"? z,Z the IEEE, 63, No. 5 (1975): 740-767.

Keyes, R. W. "Fundamental Limits in Digital Information
Processing." Proceedings of the IEEE, 69, No. 3 (1981):
267-278.

Keyes, R. W. and Landauer, R. "Minimum Energy Dissipation in
Logic." IBM Journal of Research and Development 14
(1970): 152-157.

Kleinrock, L. "Distributed Systems." Communications of the
ACM, 28, No. 11 (November 1985); 1200-1213.

Knox, D. "Investigation of a Microcomputer-based
Multiprocessing System." M. S. thesis, Iowa State
University, Ames, lA, 1983.

Krumme, D. "Problems of Scale in Collecting Performance Data
on Loosely-Coupled Multiprocessors." Proceedings of the
Fourth Conference on Hvpercubes, Concurrent Computers,
and Applications. New York: ACM, 1989.

www.manaraa.com

218

Kniinme, D., Couch, A., House, B., and Cox, J. "The Triplex
Tool Set for the NCUBE Multiprocessor." Report. Dept.
of Computer Science, Tufts University, March 1989.

Kruskal, C. P. "Upper and Lower Bounds on the Performance of
Parallel Algorithms." Ph.D. dissertation. New York
University, October 1981.

Kuck, D. The Structure of Computers and Computations. New
York: John Wiley and Sons, 1978.

Lamport, L. "Time, Clocks, and the Ordering of Events in a
Distributed System." Communications of the ACM 21 (July
1978): 558-565.

Landauer, R. "Wanted; A Physically Possible Theory of
Physics." IEEE Spectrum, 4, No. 9 (1967): 105-109.

LeBlanc, T. "Shared Memory Versus Message-Passing in a
Tightly-Coupled Multiprocessor: A Case Study." Butterfly
Project Report 3. Computer Science Dept., Univ. of
Rochester, January 1986.

Lee, R. "Empirical Results on the Speed, Efficiency,
Redundancy, and Quality of Parallel Computations."
Proceedings of the 1980 International Conference on
Parallel Processing, 91-96. Washington, D.C.: IEEE
Computer Society Press, 1980.

Levin, L. "Do Chips Need Wires?" Personal correspondence.
Laboratory for Computer Science, MIT, Cambridge, MA,
1988.

Lipovski, G. J. and Malek, M. Parallel Computing: Theory and
Comparisons. New York; John Wiley and Sons, 1987.

Malony, A. "An Integrated Performance Data Collection,
Analysis, and Visualization System." Proceedings of the
Fourth Conference on Hvpercubes, Concurrent Computers,
and Applications. New York; ACM, 1989.

Mead, C. and Conway, L. Introduction to VLSI Systems.
Reading, MA: Addison-Wesley, 1980.

Melamed, B. and Morris, R. "Visual Simulation; The
Performance Analysis Workstation." IEEE Computer, 18,
No. 8 (August 1985); 87-94.

Mundie, C. "Interacting with the Tiny and the Immense."
BYTE. 14, No. 4 (April 1989): 279-288.

www.manaraa.com

219

Nichols, K. and Edmark, J. "Modeling Multicomputer Systems
with PARET." IEEE Computer, 21, No. 5 (May 1988): 39-48.

Patton, Peter C. "Multiprocessors: Architecture and
Applications." IEEE Computer, 18, No. 6 (1985): 29-40.

Peltz, D. "Visualization of Data." MIPS, 1, (February 1989);
35-38.

Reed, D. A. "Instrumenting Distributed Memory Parallel
Systems: A Report." In Instrumentation for Future
Parallel Computer Systems, edited by Bucher, Simmons, and
Koskela. Reading, MA: Addison-Wesley, 1989.

Reed, D. A. and Fujimoto, R. M. Multicomputer Networks :
Message-Based Parallel Processing. Cambridge, MA: MIT
Press, 1987.

Reed, D. A. and Grunwald, D. "The Performance of
Multicomputer Interconnection Networks." IEEE Computer,
20, No. 6 (June 1987): 63-73.

Roberts, R. "Hybrid Performance Measurement Instrumentation
for Loosely-Coupled MIMD Systems." Proceedings of the
Fourth Conference on Hypercubes, Concurrent Computers,
and Applications. New York: ACK, 1989.

Rover, D. T. "Implementation of a Multiprocessor Architecture
for Boundary Value Problems." M.S. thesis, Iowa State
University, Ames, lA, 1986.

Rover, D. T., Prabhu, G. M., and Wright, C. T.
"Characterizing the Performance of Concurrent Computers:
A Picture is Worth a Thousand Numbers." Proceedings of
the Fourth Conference on Hypercubes, Concurrent
Computers, and Applications. New York: ACM, 1989.

Rudolph, D. and Reed, D. "A Performance Evaluation Tool for
the Intel iPSC/2." Proceedings of the Fourth Conference
on Hypercubes, Concurrent Computers, and Applications.
New York: ACM, 1989.

Rummelhart, D. and McClelland, J. Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition, Vols. 1 and 2. Cambridge, MA; MIT Press,
1986.

Sanguinetti, J. "Performance of a Message-Based
Multiprocessor." IEEE Computer, 19, No. 9 (1986): 47-55.

Savage, J. "Computational Work and Time in Finite Machines."
Journal of the ACM 19 (1972): 660-674.

www.manaraa.com

220

Schuster, D. "Visualization with DataScope and ImageTool."
MIPS. 1, (March 1989): 33-35.

Schwartz, J. T. "Ultracomputers." ACM Transactions on
Programming Languages and Systems, 2, No. 4 (1980); 484-
521.

Segall, Z. and Rudolph, L. "PIE: A Programming and
Instrumentation Environment for Parallel Processing."
IEEE Software, 2, No. 11 (November 1985): 22-37.

Seitz, Charles L. "The Cosmic Cube." Communications of the
ACM, 28, No. 1 (1985); 22-33.

Seitz, C. and Matisoo, J. "Engineering Limits on Computer
Performance." Physics Today, 31, (May 1984): 38-45.

Shaw, D. E. "The NON-VON Supercomputer." Technical Report.
Dept. of Computer Science, Columbia Univ., New York,
August 1982.

Shu, N. C. Visual Programming. New York; Van Nostrand
Reinhold Company, 1988.

Siegel, H., Siegel, L., Kemmerer, F., Mueller, P., Smalley,
H., and Smith, D. "Passm: A Partitionable
Multimicrocomputer SIMD/MIMD System for Image Processing
and Pattern Recognition." Tech. Rept. TR-EE 79-40.
Purdue University, 1979.

Snodgrass, R. "A Relational Approach to Monitoring Complex
Systems." ACM Transactions on Computer Systems, 6, No. 2
(May 1988); 157-196.

Snodgrass, R. and Ahn, I. "Temporal Databases." IEEE
Computer. 19, No. 9 (September 1986): 35-42.

Snyder, L. "Introduction to the Configurable, Highly Parallel
Computer." IEEE Computer, 15, No. 1 (January 1982): 47-
56.

Snyder, L. "Parallel Programming and the Poker Programming
Environment." IEEE Computer. 17, No. 7 (July 1984); 27-
36.

Stone, H. S. High-Performance Computer Architecture.
Reading, MA; Addison-Wesley, 1987.

Sutherland, I. E. "Computer Displays." Scientific American,
223, (June 1970): 57-81.

www.manaraa.com

221

Sutherland, I. and Mead, C. "Microelectronics and Computer
Science." Scientific American, 237, No. 9 (1977): 210-
228.

Swan, R. J., Fuller, S. H., and Siewiorek, D. P. "Cm* - A
Modular, Multi-Microprocessor." Proceedings AFIPS
Conference 46 (1977): 637-643.

Toffoli, T. and Margolus, N. Cellular Automata Machines; A
New Environment for Modeling. Cambridge, MA: MIT Press,
1987.

Unger, S. H. "A Computer Oriented Towards Spatial Problems."
Proceedings of IRE. 46, No. 10 (1958): 1744-1750.

Wilcke, W. "The IBM Victor Multi-Processor Project."
Proceedings of the Fourth Conference on Hypercubes,
Concurrent Computers, and Applications. New York: ACM,
1989.

Wolfram, S. "Cellular Automata as Models of Complexity."
Nature, 311, No. 4 (1984): 419-424.

Yao, A. "The Entropie Limitations on VLSI Computations."
Proceedings of the Thirteenth Annual ACM Symposium on
Theory of Computing. New York: ACM, 1981.

Zorpette, G. "Fractals: Not Just Another Pretty Picture."
IEEE Spectrum, 25, No. 10 (October 1988): 29-31.

www.manaraa.com

222

ACKNOWLEDGEMENTS

I- would like to acknowledge the contributions of the

following to my academic and personal pursuits. First, let me

thank Dr. Charles Wright and Dr. Paul Basore, major professors

for my doctoral and masters work, respectively. I have

benefited from their involvement throughout my graduate work.

They offered guidance, yet the freedom to pursue my own

interests. Their beliefs and methods have been stimulating

and motivating forces in my work; each in his own way has

offered something invaluable to my growth as a professional

and as a person.

I would also like to thank the other members of my

Program of Study committee, for their willing discussion of my

efforts and participation in my degree program: Dr. Terry

Smay, Dr. Gurpur Prabhu, Dr. Arthur Pohm, and Dr. Jim Davis.

Dr. Chip Comstock attended the final oral examination as a

substitute and deserves thanks too. I appreciate the

assistance of Gary Bridges, Scott Irwin, and Paul Dorweiler in

the Digital Systems Laboratory; when I needed something in the

lab, they provided it. Several other colleagues and friends

have listened to my ideas and given constructive comments at

various stages of this research, including Roy Zingg, Robert

Burton, Huey Ling, Jan Stone, and Deb Knox.

Much of this work was completed under an IBM Graduate

Fellowship. I appreciate the funding provided by the Graduate

Fellowship Program and in particular the efforts on my behalf

of Dr. Jerry Balm and Dr. V. Sadagopan of IBM.

www.manaraa.com

223

Also, thanks goes to my family for their love and

support. To my parents, for enduring and endearing guidance;

to my brothers, one for clearing a studious path and the other

for telling me I was not always right; to my sister, for being

a friend and a great second mom to our nine-month-old

daughter, Brittany; and to my husband, Craig, for caring about

me and my work. Finally, I dedicate this to Brittany. She is

a wonderful distraction and has enriched this work in ways

that no book could.

	1989
	Visualization of program performance on concurrent computers
	Diane Thiede Rover
	Recommended Citation

	tmp.1415743205.pdf.cWycQ

