
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

Visualization of program performance on
concurrent computers
Diane Thiede Rover
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Rover, Diane Thiede, "Visualization of program performance on concurrent computers " (1989). Retrospective Theses and Dissertations.
9173.
https://lib.dr.iastate.edu/rtd/9173

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9173?utm_source=lib.dr.iastate.edu%2Frtd%2F9173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm 
master. UMI films the text directly from the original or 
copy submitted. Thus, some thesis and dissertation copies 
are in typewriter face, while others may be from any type 
of computer printer. 

The quality of this reproduction is dependent upon the 
quality of the copy submitted. Broken or indistinct print, 
colored or poor quality illustrations and photographs, 
print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a 
complete manuscript and there are missing pages, these 
will be noted. Also, if unauthorized copyright material 
had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the 
upper left-hand comer and continuing from left to right in 
equal sections with small overlaps. Each original is also 
photographed in one exposure and is included in reduced 
form at the back of the book. These are also available as 
one exposure on a standard 35mm slide or as a 17" x 23" 
black and white photographic print for an additional 
charge. 

Photographs included in the original manuscript have 
been reproduced xerographically in this copy. Higher 
quality 6" x 9" black and white photographic prints are 
available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9014946 

Visualization of program performance on concurrent computers 

Rover, Diane Thiede, Ph.D. 

Iowa State University, 1989 

U M I  
SOON.ZeebRA 
Ann Arbor, MI 48106 



www.manaraa.com



www.manaraa.com

visualization of program performance 

on concurrent computers 

b y  

Diane Thiede Rover 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Electrical Engineering and Computer 
Engineering 

Major: Computer Engineering 

Approved: 

In Charge of Ma] 

e M x j o r  Department 

e Graduate Corlege 

Members of the Committee: 

Iowa State University 
Ames, Iowa 

1989 

Copyright @ Diane Thiede Rover, 1989. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

CHAPTER I. INTRODUCTION 1 

Concurrent Computation 2 
Motivation 9 
Complex Systems 11 
Visualization 14 
Scope of this Work 16 

CHAPTER II. RELATED WORK 18 

The Mapping Problem 18 
Performance Analysis Tools 2 2  

CHAPTER III. PERFORMANCE MONITORING 31 

Evaluation Methods 31 
Monitoring Complex Systems 37 
Data Management 42 
Perspectives 45 

CHAPTER IV. REPRESENTING PERFORMANCE 50 

Data Presentation 50 
Categories of Concurrent Computers 52 

CHAPTER V. PICTURES OF PERFORMANCE 59 

Methodology 59 
Observable Parameters 63 

Basic metrics 64 
Derived metrics 66 

Graphics 93 
Plots 94 
Profiles 98 

CHAPTER VI. PROTOTYPE IMPLEMENTATION 99 

Simulation 99 
Graphics Software 105 
Case Studies in Visualization ill 

System configuration 111 
Broadcast communication program 115 
Collect communication program 137 
Shift communication program 155 
Divide-and-conquer quicksort program 161 
One-dimensional wave equation program 169 



www.manaraa.com

iii 

CHAPTER VII. DISCUSSION AND CONCLUSIONS 206 

Future Work 206 
A Question of Dimension 209 
Research Contributions 210 

BIBLIOGRAPHY 213 

ACKNOWLEDGEMENTS 222 



www.manaraa.com

iv 

LIST OF TABLES 

Table 4.1. 

Table 6.1. 

Table 6.2. 

Table 6.3. 

Table 6.4. 

Table 6.5. 

Table 6.6. 

Table 6.7. 

Table 6.8. 

Table 6.9. 

Table 6.10. 

Table 6.11. 

Table 6.12. 

Table 6.13. 

Table 6.14. 

Page 

Complexity categories for performance data 
presentation formats 57 

Simulation results for the case studies 118 

Key for global statistics 119 

Broadcast routine. Selected global 
statistics for snapshot number 6 taken at 
0.0072 seconds 120 

Broadcast routine. Selected global 
statistics for snapshot number 10 taken at 
0.0144 seconds 121 

Key for local statistics 122 

Broadcast routine. Selected local 
statistics for Processor 0, (x,y) = (0,0) 123 

Broadcast routine. Selected local 
statistics for Processor 100, (x,y) = (7,4) 124 

Collect routine. Selected global statistics 
for snapshot number 8 taken at 0.00315 
seconds 144 

Collect routine. Selected global statistics 
for snapshot number 15 taken at 0.0168 
seconds 145 

Collect routine. Selected local 
statistics for Processor 0, (x,y) = (0,0) 146 

Collect routine. Selected local 
statistics for Processor 100, (x,y) = (7,4) 147 

Quicksort program. Selected global 
statistics for snapshot number 10 taken at 
0.02273 seconds 164 

Quicksort program. Selected global 
statistics for snapshot number 15 taken at 
0.0279 seconds 165 

Quicksort program. Selected local 
statistics for Processor 0, (x,y) = (0,0) 166 



www.manaraa.com

V 

Table 6.15. 

Table 6.16. 

Table 6.17. 

Table 6.18. 

Table 6.19. 

Table 6.20. 

Table 6.21. 

Quicksort program. Selected local 
statistics for Processor 100, (x,y) = (7,4) 167 

1-D Wave program. Selected global 
statistics for snapshot number 4 taken 
at 0.01 seconds 189 

1-D Wave program. Selected global 
statistics for snapshot number 12 taken 
at 0.03 seconds 190 

1-D Wave program. Selected global 
statistics for snapshot number 23 taken 
at 0.052 seconds 191 

1-D Wave program. Selected global 
statistics for snapshot number 36 taken 
at 0.09 seconds 192 

1-D Wave program. Selected local 
statistics for Processor 0, (x,y) = (0,0) 193 

1-D Wave program. Selected local 
statistics for Processor 100, (x,y) = (7,4) 194 



www.manaraa.com

Figure 1.1. 

Figure 1.2. 

Figure 2.1. 

Figure 3.1. 

Figure 5.1. 

Figure 6.1. 

Figure 6.2. 

Figure 6.3. 

Figure 6.4. 

Figure 6.5. 

Figure 6.6. 

Figure 6.7. 

Figure 6.8. 

Figure 6.9. 

vi 

LIST OF FIGURES 

Page 

A classification of computer systems based 
on the organization of data and control 4 

A distributed memory concurrent computer 6 

A systems approach to solving problems 
concurrently 20 

Three perspectives on system performance: 
program, architecture, and machine 47 

Two geometric graphs, in template form, 
for presenting performance data from a 
machine perspective: a dot plot and a 
cell plot 96 

Event-driven simulation and generation of 
event records 103 

Post-processing of an event trace 106 

Graphical interface of the visual 
analysis tool 108 

Mapping a three-dimensional (eight-node) 
hypercube onto a two-dimensional grid 
(gray code mapping) 113 

Assignment of processor addresses for an 
eight-dimensional (256-node) hypercube to 
locations in a two-dimensional (16x16) 
grid (gray code mapping) 114 

Basic operation of Broadcast on an eight-
node hypercube 117 

Picture of performance (dither plot): 
Broadcast, ss#2 at 0.9 msec., cumulative 
traffic (bytes) 126 

Picture of performance (dither plot): 
Broadcast, ss#3 at 1.8 msec., cumulative 
traffic (bytes) 127 

Picture of performance (dither plot): 
Broadcast, ss#4 at 3.6 msec., cumulative 
traffic (bytes) 128 



www.manaraa.com

vii 

Figure 6.10. Picture of performance (dither plot); 
Broadcast, ss#5 at 5.4 msec., cumulative 
traffic (bytes) 129 

Figure 6.11. Picture of performance (dither plot); 
Broadcast, ss#6 at 7.2 msec., cumulative 
traffic (bytes) 130 

Figure 6.12. Picture of performance (dither plot); 
Broadcast, ss#7 at 9 msec., cumulative 
traffic (bytes) 131 

Figure 6.13. Picture of performance (dither plot); 
Broadcast, ss#8 at 10.8 msec., cumulative 
traffic (bytes) 132 

Figure 6.14. Picture of performance (dither plot): 
Broadcast, ss#9 at 12.6 msec., cumulative 
traffic (bytes) 133 

Figure 6.15. Picture of performance (dither plot); 
Broadcast, ss#10 at 14.4 msec., cumulative 
traffic (bytes) 134 

Figure 6.16. Picture of performance (dither plot); 
Broadcast, ss#ll at 16.2 msec., cumulative 
traffic (bytes) 135 

Figure 6.17. Picture of performance (dither plot); 
Broadcast, ss#12 at 18 msec., cumulative 
traffic (bytes) 136 

Figure 6.18. Picture of performance (3D plot); 
Broadcast, ss#10 at 14.4 msec., cumulative 
traffic (bytes) 138 

Figure 6.19. Picture of performance (dither plot); 
Broadcast, ss#10 at 14.4 msec., cumulative 
communication time 139 

Figure 6.20. Picture of performance (dither plot); 
Broadcast, ss#10 at 14.4 msec., cumulative 
wait time 140 

Figure 6.21. Picture of performance (dither plot); 
Broadcast, ss#10 at 14.4 msec., processor 
activity (black: computing; gray: 
communicating; white: none) 141 

Figure 6.22. Basic operation of Collect on an eight-node 
hypercube 142 



www.manaraa.com

viii 

Figure 6.23. 

Figure 6.24. 

Figure 6.25. 

Figure 6.26. 

Figure 6.27. 

Figure 6.28. 

Figure 6.29. 

Figure 6.30. 

Figure 6.31. 

Figure 6.32. 

Figure 6.33. 

Figure 6.34. 

Figure 6.35. 

Picture of performance (dither plot); 
Collect, ss#2 at 0.35 msec., cumulative 
traffic (bytes) 148 

Picture of performance (dither plot): 
Collect, ss#8 at 3.15 msec., cumulative 
traffic (bytes) 149 

Picture of performance (3D plot): 
Collect, ss#8 at 3.15 msec., cumulative 
traffic (bytes) 150 

Picture of performance (dither plot): 
Collect, ss#8 at 3.15 msec., cumulative 
communication time 151 

Picture of performance (dither plot): 
Collect, ss#8 at 3.15 msec., cumulative 
wait time 152 

Picture of performance (dither plot): 
Collect, ss#8 at 3.15 msec., processor 
activity (black: computing; gray: 
communicating; white; none) 153 

Picture of performance (dither plot): 
Collect, ss#15 at 16.8 msec., cumulative 
traffic (bytes) 154 

Basic operation of Shift on an eight-node 
hypercube 156 

Picture of performance (dither plot): 
Shift, ss#4 at 0.7 msec., cumulative 
wait time 157 

Picture of performance (dither plot): 
Shift, ss#12 at 4.2 msec., processor 
activity (black: computing; gray: 
communicating; white; none) 158 

Picture of performance (dither plot): 
Shift, ss#12 at 4.2 msec., cumulative 
communication time 159 

Picture of performance (dither plot); 
Shift, ss#12 at 4.2 msec., cumulative 
wait time 160 

Basic operation of Quicksort on an eight-
node hypercube 162 



www.manaraa.com

ix 

Figure 6.36. 

Figure 6.37. 

Figure 6.38. 

Figure 6.39. 

Figure 6.40. 

Figure 6.41. 

Figure 6.42. 

Figure 6.43. 

Figure 6.44. 

Figure 6.45. 

Figure 6.46. 

Figure 6.47. 

Picture of performance (dither plot): 
Quicksort, ss#lO at 22.7 msec., cumulative 
work (operations) 170 

Picture of performance (dither plot): 
Quicksort, ss#10 at 22.7 msec., cumulative 
computation time 171 

Picture of performance (dither plot): 
Quicksort, ss#10 at 22.7 msec., cumulative 
communication time 172 

Picture of performance (dither plot): 
Quicksort, ss#10 at 22.7 msec., processor 
activity (black: computing; gray: 
communicating; white; none) 173 

Picture of performance (dot plot): 
Quicksort, at 23 msec., cumulative 
activity 174 

Picture of performance (dot plot); 
Quicksort, at 23 msec., instantaneous 
activity 175 

Picture of performance (dither plot): 
Quicksort, sb#15 at 27.9 msec., cumulative 
work (operations) 176 

Picture of performance (3D plot): 
Quicksort, ss#15 at 27.9 msec., cumulative 
work (operations) 177 

Picture of performance (dither plot): 
Quicksort, ss#15 at 27.9 msec., cumulative 
computation time 178 

Picture of performance (dither plot): 
Quicksort, ss#l5 at 27.9 msec., cumulative 
communication time 179 

Picture of performance (dither plot): 
Quicksort, ss#l5 at 27.9 msec., processor 
activity (black; computing; gray; 
communicating; white: none) 180 

Picture of performance (dot plot): 
Quicksort, at 28 msec., cumulative 
activity 181 



www.manaraa.com

X 

Figure 6.48. 

Figure 6.49. 

Figure 6.50. 

Figure 6.51. 

Figure 6.52. 

Figure 6.53. 

Figure 6.54. 

Figure 6.55. 

Figure 6.56. 

Figure 6.57. 

Figure 6.58. 

Figure 6.59. 

Picture of performance (dot plot); 
Quicksort, at 28 msec., instantaneous 
activity 

Event space-time profile: Quicksort. 
Time: 0 - 31 msec.. Addresses: 0—25 Time: 0-31 msec.. Addresses: 

event 
255, 

Event space-time profile; Quicksort. 
Time: 0-31 msec.. Addresses; 0 - 255, 
X : activity event 

Event space-time profile; Quicksort. 
Time; 0-31 msec.. Addresses; 0 - 255, 
X : compute event 

Event space-time profile; Quicksort. 
Time; 0-31 msec.. Addresses; 0 - 255, 
X ; send event 

Event space-time profile: Quicksort. 
Time: 0-31 msec., Addresses : 0 - 255, 
X : receive event 

Picture of performance (dither plot): 
ID Wave, ss#4 at 10 msec., processor 
activity (black; computing; gray; 
communicating; white; none) 

Picture of performance (dither plot); 
ID Wave, ss#4 at 10 msec., cumulative 
communication time 

Picture of performance (dither plot); 
ID Wave, ss#12 at 30 msec., processor 
activity (black: computing; gray: 
communicating; white: none) 

Picture of performance (dither plot): 
ID Wave, ss#12 at 30 msec., cumulative 
computation time 

Picture of performance (dither plot): 
ID Wave, ss#12 at 30 msec., cumulative 
communication time 

Picture of performance (dither plot): 
ID Wave, ss#23 at 52 msec., processor 
activity (black; computing; gray; 
communicating; white; none) 

182 

183 

184 

185 

186 

187 

195 

196 

198 

199 

200 

201 



www.manaraa.com

xi 

Figure 6.60. Picture of performance (dither plot): 
ID Wave, ss#23 at 52 msec., cumulative 
computation time 

Figure 6.61. 

Figure 6.62, 

Figure 6.63 

Picture of performance (dither plot): 
ID Wave, ss#23 at 52 msec., cumulative 
communication time 

Picture of performance (dither plot): 
ID Wave, ss#36 at 90 msec., cumulative 
computation time 

Picture of performance (dither plot): 
ID Wave, ss#36 at 90 msec., cumulative 
communication time 

202 

203 

204 

205 



www.manaraa.com

1 

CHAPTER I. 

INTRODUCTION 

However, if I had waited long enough I probably would never 
have written anything at all since there is a tendency when 
you really begin to learn something about a thing not to want 
to write about it but rather to keep on learning about it 
always and at no time, unless you are very egotistical, which, 
of course, accounts for many books, will you be able to say: 
now I know all about this and will write about it. Certainly 
I do not say that now; every year I know there is more to 
learn, but I know some things which may be interesting now ... 
and I might as well write what I know about them now. 

Ernest Hemingway, from Death in the Afternoon 

Many basic ideas and problems concerning computers and 

programming have been around since the 1820s and 1830s when 

Charles Babbage designed his Analytical Engine and one of his 

colleagues. Lady Lovelace (born Ada Augusta Byron), developed 

her own programming language. The Analytical Engine and other 

early mechanical computing machines evolved into the 

electronic digital computers that were first introduced in the 

1930s and became the basis for present computers. Throughout 

this history and especially over the past fifty years, cost 

and performance have been important design issues. For a 

fixed cost, the designer typically wants the fastest machine 

possible. There are several means of achieving this end, 

including choosing a simple organization with very fast parts 

or a more complex organization with slower parts [Kuck, 1978]. 

The first choice, using fast parts, has met with success 

so far. The dramatic progress in microelectronics over the 
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past twenty-five years has led to faster device technologies 

and yielded rapid growth in computer performance. However, 

the three basic functions of switching, storage, and 

communication that are required in computing systems are 

beginning to approach fundamental physical limits [Seitz and 

Matisoo, 1984]. Thus, the second choice, using many slower 

parts, is becoming more important. This chapter discusses 

some implications of that choice. 

Concurrent Computation 

How can a complex organization with many slow parts, or 

processors, result in a fast machine? It is not simply that 

computers with more parts should be able to solve larger 

problems in less time. Rather, it depends on the nature of 

the parts and how we structure and control the parts. 

Using many slow parts is the premise of parallel or 

concurrent computing. A spectrum of designs identifies the 

possibilities for exploiting the parallelism or concurrency 

among the many parts. Though many spectrums can be defined 

based on different criteria, two are mentioned here and will 

be referenced in later chapters. Within one spectrum, there 

are three regions based on the number and complexity of the 

processors. At one extreme are simple, bit-serial processors. 

Although any one of these processors is of little value by 

itself, the aggregate computing power can be large when many 

are coupled together. This approach can be likened to a large 

colony of termites devouring a log. At the opposite extreme 

are machines that use a small number of powerful processors. 

Each processor is based on sophisticated pipelining and is 
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built using the fastest available circuit technology. 

Continuing our analogy, this approach is similar to a few 

woodsmen with chain saws. The third, intermediate approach 

combines a large number of microprocessors. This is analogous 

to a small army of hungry beavers [Reed and Fujimoto, 1987]. 

The third approach, as discussed below, is most relevant to 

later chapters. 

Within another spectrum, there are four classes based on 

the organization of data and the organization of control (or 

instruction execution). In a centralized organization, data 

or control resides in only one part of the computer; data in 

a shared memory and control in a designated processor. In a 

distributed organization, data or control is local to each 

part; data in a local memory and control in each processor. 

Figure 1.1 illustrates the four possible combinations. Note 

that centralized data refers to the shared memory model, and 

distributed data, the message passing (or distributed memory) 

model. Also, centralized control refers to synchronous (or 

lockstep) execution, and distributed control, asynchronous 

execution. The four classes consist of the following 

organizations: (l) centralized control and centralized data; 

(2) centralized control and distributed data; (3) distributed 

control and centralized data; and (4) distributed control and 

distributed data. This is roughly similar to Flynn's 

classification based on instruction streams and data streams, 

corresponding, respectively, to SISD, SIMD, MISD, and MIMD 

[Flynn, 1966]. The fourth class, as discussed below, is most 

relevant to later chapters. 
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CONTROL 

• • • Distributed 

Centralized 

DATA 

Centralized 

Complex Simple Memory 
R'ocessor R'ocessor Module 

Distributed 

R-ocessor 

• o 
(coarse-
grain) 

(line-
grain) 

Figure 1.1. A classification of computer systems based on the 
organization of data and control 
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A note on terminology may be helpful at this point. The 

terms "concurrent" and "parallel" are often used 

interchangeably in the literature. Although a particular 

usage of the terms is evolving, there is no generally accepted 

distinction between the two terms. In a general context, we 

may interpret them to have the same meaning: a computer 

system is a concurrent or parallel one if it has more than one 

processing element, the processing elements are 

interconnected, and a collection of processing elements work 

together to solve a problem. However, the term "concurrent" 

sometimes denotes a computer system with more or less 

autonomous processing elements each having its own local 

memory and communicating via message passing. This is in 

contrast to systems with processing elements that operate in 

lockstep or that communicate using shared memory. Given this 

distinction, the term "concurrent" is more appropriate for our 

purposes. Thus, though we occasionally use both terms, 

parallel should be interpreted more generally and concurrent, 

more specifically. 

A concurrent computer involves the collective and 

simultaneous interaction of many parts engaged in computation 

and communication activities. Figure 1.2 illustrates a 

computer system representative of the class of distributed 

memory concurrent computers. Coordination and cooperation are 

critical. Concurrent architectures and algorithms are the key 

to efficiently orchestrating the activities. The objective is 

to organize the interactions among the parts so that 

computations are performed concurrently and communication 

occurs locally within the concurrent computer. We will focus 

on a family of concurrent computers called multicomputers. 
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Multicomputers consist of a large number^ possibly 

hundreds or thousands, of nodes connected in some fixed 

topology or network. The nodes asynchronously cooperate via 

message passing to execute the tasks of parallel programs. 

Each network node, fabricated as a small number of VLSI (very 

large scale integration) chips, contains a processor, a local 

memory, a communication controller capable of routing messages 

without delaying the processor, and a small number of direct 

connections to other nodes. Specialized co-processors for 

floating-point, graphics, or secondary storage operations may 

also be included on a node. An important feature is that a 

multicomputer can be implemented using simple building blocks 

for the computation and communication components of a node 

[Reed and Fujimoto, 1987]. 

Application programs must be decomposed into concurrently 

executing tasks. The tasks may be small, medium, or large in 

size, and the multicomputer is termed a fine-grain, medium-

grain, or large-grain (also coarse-grain) machine, 

respectively. Task size (for a program) may be measured as 

the amount of computation between task interactions, and grain 

size (for a multicomputer) loosely describes the node size or 

complexity. There are implementations of programming 

languages, models of computation, and architectures 

corresponding to each size. For example, the Actors model of 

concurrent computation [Agha, 1986] has been applied to both 

fine-grain and medium-grain configurations via the Concurrent 

Smalltalk [Dally, 1987] and the Cantor [Athas and Seitz, 1988] 

programming environments, respectively. The Large-Grain Data 

Flow (LGDF) model [Babb and DiNucci, 1987] has been applied to 

large-grain configurations, including the conventional 
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environment of Fortran on the Cray X/MP. 

The idea of multicomputers is not new. Arthur Burks, an 

early pioneer in computing and colleague of John von Neumann, 

has suggested an architecture called "programmable computer 

structures;" a typical cell would hold a tiny computer which 

would store, process, and/or communicate information; and 

which would also control its own activities and regulate the 

passage of information through its own territory [Burks, 

1981]. However, the interest in multicomputers has recently 

grown because improvements in technology have made them viable 

alternatives to other high performance computer systems. VLSI 

technology, namely powerful microprocessors and inexpensive 

memory, makes it both technically and economically feasible to 

construct multicomputers with many computing nodes. Although 

multicomputers have been the subject of numerous research 

projects since the 1970s, the idea remained unexploited until 

the construction and demonstration of the Cosmic Cube at 

Caltech in 1983 [Seitz, 1985]. The Cosmic Cube consists of a 

collection of nodes interconnected in a hypercube topology, 

one member of the multicomputer family of topologies. The 

computer system shown in Figure 1.2 is configured as a six-

dimensional (64-processor) binary hypercube. Within the 

Cosmic Cube, each node includes a pair of Intel 8086/8087 

processor chips, local memory, and a set of communication 

links. Following the success of the Cosmic Cube, four 

companies (namely, Intel, Ametek, Ncube, and Floating Point 

Systems) began producing commercial multicomputers configured 

as hypercubes. 
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Motivation 

A research project often has its roots in some 

identifiable incident, observation, or thought. That origin 

may become the motivation for defining, clarifying, and 

attacking a problem. A chord is struck within the researcher 

that signals that a challenge awaits, that something 

interesting, exciting, and worthwhile needs investigating. 

This project has its roots in a couple of pieces of technical 

literature. In recollecting the origins, we choose to provide 

excerpts rather than merely summarize relevant passages. The 

ideas noted here were primary influences in this work, however 

we should mention that these were just a starting point. 

These ideas led to the discovery of many others, all of which 

influenced the direction of this work. Admittedly, this work 

could have taken several different directions depending on 

which ideas were emphasized. 

The initial motivation for this work stems from a chapter 

in The Connection Machine, a book by Daniel Hillis, entitled 

"New Computer Architectures and Their Relationship to Physics 

or. Why Computer Science is No Good" (which was reprinted from 

[Hillis, 1982]). Hillis says that "there is beginning to be a 

forest to see through the trees." The phrase refers to the 

notion that computer systems are becoming large enough to 

exhibit the kind of simple, continuous behavior that we are 

accustomed to in physics, large enough that the behavior of 

the system can no longer be dominated by the behavior of any 

single component [Hillis, 1985]. Despite offering merely 

interesting insights, this chapter seems to open the door to a 

world of discovery, especially in the area of perceiving. 
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viewing, and understanding large computer systems. 

Ivan Sutherland and Carver Mead also explore the 

relationship between computers and computer science in 

[Sutherland and Mead, 1977]. Excerpts from this paper 

include: 

Computer science has grown up in an era of computer 
technologies in which wires were cheap and switching 
elements were expensive. Integrated circuit technology 
reverses the cost situation .... As we leam to 
understand the changed relative costs of logic and wiring 
and to take advantage of the possibilities inherent in 
large-scale integration we can expect a real revolution 
in computation, not only in the forms of computing 
machines but also in the theories on which their design 
and use are founded. ... Computer science as it is 
practiced today is based almost entirely on mathematical 
reasoning. It is concerned with the logical operations 
that take place in computing devices. It touches only 
lightly on the necessity to distribute logic devices in 
space, a necessity that forces one to provide 
communication paths between them. Computer science as it 
is practiced today has little to say about how the 
physical limitations to such communications bound the 
complexity of the computing tasks a physically realizable 
computer can accomplish. [Sutherland and Mead, 1977] 

The paper proceeds to discuss the effects of 

communication, the importance of regularity in computing 

structures, the advent of distributed memory concurrent 

computers, and the goal of matching the complexities of 

problems to the simple patterns of communication in actual 

machines. Several later remarks summarize their thoughts: 

The challenge in designing or using a parallel processor 
... lies in discovering ways in which simple patterns of 
communication within the processor can be made to match 
the communication tasks inherent in the problem being 
solved. ... We believe that just as an important part of 
today's computer science concerns itself with sequences 
of instructions in time, so an important aspect of 
computer science in the future will be the study of sets 
of communications distributed in space. [Sutherland and 
Mead, 1977] 
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Both of these treatises emphasize that computation and 

communication activities occur in time and space within the 

machine and that we need to start thinking about computing, 

especially large-scale parallel computing, with that in mind 

if we are to realize the potential power of future computer 

systems. These are challenging and stimulating ideas, and 

they are a premise for much of the work described in the 

chapters that follow. To facilitate thinking about the 

temporal and spatial behavior of parallel computation, we feel 

it is critical to have methods and tools that give us an 

appropriate view of system performance. Thus, we sought to 

create a performance "picture" that would illustrate program 

behavior within the time and space domains of a concurrent 

computer. 

Complex Systems 

Two concepts underlie the work described in this thesis. 

One is complex systems, and the other is visualization. We 

discuss complex systems in this section and then turn to 

visualization in the next section. However, we refer to the 

concepts again in later chapters, since both are common 

threads running throughout this work. 

Complex systems come in many forms, including a colony of 

ants, a hive of bees, a society of people, a cluster of stars, 

the brain and its neurons, a chip with transistors, and a 

spreadsheet of cells, to name a few ([Fox et al., 1988] gives 

a longer, more detailed list). Each of these systems is 

characterized by a large collection of entities or members 

that are connected in some way. Because a concurrent computer 
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involves the collective and simultaneous interaction of many 

elements engaged in computation and communication activities 

across a network, it also is a complex system. The behavior 

and properties of other complex systems may enhance our 

understanding of concurrent computer systems. Several 

researchers have studied the relationship between complex 

systems and concurrent computers, and their writings include 

[Fox et al., 1988], [Kleinrock, 1985], [Wolfram, 1984], 

[Gelernter, 1987], and [Snodgrass, 1988]. We mention some 

contributions here and will refer to others in later chapters 

as well. 

Gelernter compares honeybees and processes. He writes 

that like the bees maintaining a hive — individually feeble 

agents working in concert — a parallel program can bring 

large amounts of computing power to bear on a problem by 

establishing multiple processes or loci of activity. The bees 

coordinate their activities through visual and chemical 

signals; similarly, processes in a parallel program must 

communicate to work together. This example and others 

describe loosely-coupled systems that achieve a common goal 

with distributed control. Stated another way, each is a 

system in which loosely-coupled, self-organizing automatons 

demonstrate expedient behavior [Kleinrock, 1985]. 

We can identify several general parameters and properties 

of complex systems. These include: 

size 
structure (or topology) 
dimension 
granularity 
pattern of communication 
balance 
hierarchy of levels 
self-similarity (or scale invariance) 
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Size is the number of members in the system. If the 

system is extensible, then it can start at a given size and 

later be expanded to a larger size without adversely, or 

unreasonably, affecting the performance of the system. 

Structure is the connectivity (that is, nature of the 

connections) among the members. Topology can be static or 

dynamic over the life of the system. A dynamic structure is 

sometimes termed configurable (or reconfigurable). Dimension 

is the number of connections from a member to its neighboring 

members. Granularity reflects the amount of work to be done 

by a member. This can be a fixed or changing amount as the 

system progresses through time. Pattern of communication 

describes the spatial interaction among members. This may 

depend on the activities of the members and thus changes over 

time. Balance refers to a good, orderly mix of work and 

communication by all members. This is important to the 

performance of the system. A hierarchy of levels and 

self-similarity among levels means that members can be 

organized into, say, classes, and that the process by which 

work is done is more or less the same regardless of the level 

at which it happens. Only the scale is different. Hierarchy 

is useful to reduce the apparent complexity of a system since 

it supports selectively hiding or exposing the detailed 

workings of a system's members. 

A fascinating account of complex systems is given in 

[Gleick, 1987]. In his book, James Gleick chronicles a set of 

beliefs about complexity that was once shared by scientists 

and an alternative set of ideas that is gaining acceptance. 

Three early beliefs were; (1) simple systems behave in simple 

ways; (2) complex behavior implies complex causes; and (3) 
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different systems behave differently. However, over the past 

twenty years, ideas have changed: (1) simple systems give 

rise to complex behavior; (2) complex systems give rise to 

simple behavior; and (3) the laws of complexity hold 

universally, regardless of the details of a system's 

constituent parts. So, understanding complexity in one system 

may lend insight into understanding complexity in another 

system. Also, there is reason to believe that simplicity 

exists at some level in the system. 

Visualization 

Visualization is an area of computer graphics that 

consists of techniques and tools that allow data to be 

observed and manipulated in a geometrical, rather than 

numerical or textual, format. The visualization field can be 

divided into three broad areas: 

(1) visualization in scientific computing (ViSC), 

(2) visual programming, and 

(3) program visualization. 

Visualization in scientific computing is the visualization of 

application program results (or output data). It refers to 

the animation of data such as that produced by supercomputer 

simulations, satellites, and measuring devices used in 

astronomy, meteorology, geology, and medicine. Visual 

programming, or graphical programming, is the specification of 

programs in a notation using two or more dimensions, as by 

flowcharts, graphs, diagrams, or icons (see [Shu, 1988]). 

Program visualization, also called algorithm animation, uses 

images to represent some aspect of a program's execution. The 
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work described in this paper falls predominantly in this 

latter area. 

In general, the utility of visualization in scientific, 

engineering, and business applications is based on the ability 

of the human eye/brain combination to perceive and comprehend 

visual images orders of magnitude faster than numbers (or 

text) only. By using a computer to visualize data, we can 

absorb huge amounts of information. For instance, in a three-

dimensional color representation on a higher-resolution 

graphics display, one displayed image can represent as many as 

ten million numbers. This global picture of the data gives 

researchers the ability to see simultaneously all of the 

information that otherwise might have to be printed on reams 

of paper. It allows researchers to discover relationships and 

invariants in collections of data. An important feature of 

many visualization systems is color, where typically the 

largest data values are represented by red and the smallest by 

blue. Color-coded data are useful to identify patterns and 

anomalies. Two additional important features include (1) 

interaction, exploring and manipulating the data during 

presentation, and (2) animation, displaying a series of images 

that illustrate relationships over time. 

Graphics software tools that directly generate two- and 

three-dimensional pictures representing tables of data are 

becoming increasingly available, both commercially and in the 

public domain. Examples include MacSpin, DataScope, and 

Image, described in [Peltz, 1989] and [Schuster, 1989]. We 

discuss these tools and their relation to our work in Chapter 

VI. The tables of data to be analyzed by graphics tools can 

describe the behavior or state of any complex system. If the 
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system under study is a concurrent computer, then data 

collected to measure its performance (often thousands to 

millions of bytes) may be compiled into a tabular format. 

These tables can be transformed into pictures that offer 

insights into the development of algorithms, architectures, 

and machines. 

Scope of this Work 

The primary purpose of this work is to answer the 

following question with respect to Figure 1.2: How can we 

evaluate program performance on this computer system? The 

basis for our answer has its origins in the two concepts, 

complex systems and visualization, and in the application of 

these concepts to studying multicomputer systems. Of the many 

possible paths of study, three are pursued to varying extents; 

(1) monitoring, or measuring, program performance (i.e., data 

collection), (2) visualization of program performance (i.e., 

data presentation), and (3) development of performance models. 

In answer to the stated question, we present a unique 

graphical approach to performance measurement of (possibly 

large) concurrent computer systems. Our approach attempts to 

present a performance "picture" that will offer insight into 

the development of concurrent algorithms, architectures, and 

machines. The key elements of the approach are listed. 

(1) Observe and measure performance via instrumented 

execution of programs. 

(2) Analyze and reduce performance data via appropriate 

techniques. 

(3) Calculate aggregate measures of system behavior. 
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(4) Visually display program performance via a computer 

graphics format that illustrates computation and 

communication activities in time and space within the 

machine. 

Chapter I has provided background and introductory 

information to establish a context for the remaining chapters. 

Chapter II describes related work in two areas: performance 

analysis tools and mapping algorithms onto architectures to 

achieve optimal performance. Chapter III discusses program 

monitoring (via instrumentation) as a method of performance 

evaluation, examines critical issues in measuring performance 

on concurrent computer systems, and presents perspectives for 

observing system performance. Chapter IV discusses several 

formats for presenting performance data and the 

appropriateness of particular formats for representing the 

performance of particular computer systems. Chapter V 

presents our approach to representing program performance, 

including a description of the method, definitions of measured 

parameters and calculated statistics, and specifications of 

the graphical formats. Chapter VI describes a prototype 

implementation of the approach and presents simulation results 

from several case studies. Finally, Chapter Vll discusses yet 

unresolved issues relating to system dimension, outlines 

future work, and presents the contributions of this work. 
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CHAPTER II. 

BELATED WORK 

In the preceding chapter, some of the work being done in 

related areas has already been introduced. In this chapter, 

we review work being done in two other areas: the mapping 

problem and performance analysis tools. A discussion of the 

mapping problem is included because of its importance to the 

performance of concurrent computers and because of the 

potential contribution of this work toward solving the mapping 

problem. The majority of this chapter pertains to the latter 

area, performance analysis tools, and tools that implement 

visualization techniques are highlighted. 

The Mapping Problem 

A systems approach for developing effective concurrent 

computers emphasizes matching an algorithm, or class of 

algorithms, with an architecture. The essential points in 

such a design paradigm include: identifying parallel 

applications, developing concurrent algorithms, defining 

concurrent models of computation, specifying expressive 

concurrent programming languages, creating a concurrent 

architecture, developing efficient operating system and 

support software, and constructing an effective concurrent 

computer. These activities are illustrated in Figure 2.1. 

There should be a good match between each pair of levels, as 
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indicated by the adjoining arcs. Additionally, two objectives 

of this design process are expressiveness and efficiency. 

Expressiveness refers to the ease with which a program can be 

understood, and efficiency, the ease with which the actions 

implied in a program can be executed by the computer. 

Informally, the mapping problem involves devising a good match 

between levels to achieve optimal system performance. 

One way to express the mapping problem is in terms of 

complex systems [Fox et al., 1988]. Concurrent computing can 

be viewed as a mapping between one complex system, the 

computer, and another complex system, the problem. An aim is 

to determine which complex computers are best applied to the 

various classes of complex problems. Fox suggests that we 

find general results of the form: "Complex computers with 

system parameters and properties of such and such values can 

be used to compute problems with this and that values for its 

respective defining parameters." Two fundamental hardware 

parameters for concurrent computers are the time to 

communicate a number between two nodes and the time to perform 

a calculation. Informally, the communication overhead 

reflects the amount of time a node spends conversing with its 

neighbors instead of doing productive work on its own. It is 

a function of the ratio of communication and calculation times 

and represents the fraction of the total run time spent on 

communication. A small ratio implies a better fit between 

problem and computer and is needed for good performance of a 

concurrent computer and algorithm. A similar analysis in 

terms of overhead incurred per unit of computation is 

presented by Stone [Stone, 1987]. Performance is shown to 

depend on the length of a runtime quantum relative to the 
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length of communications overhead produced by that quantum. 

In each case, the ratio is used to balance concurrency and 

communication and thus achieve optimum performance. Seeking a 

balance between concurrency and communication is an approach 

to solving the mapping problem. 

A graph-theoretic treatment of the mapping problem is 

given by Bokhari [Bokhari, 1987]. He calls it the assignment 

problem and defines a central problem and a variant. The 

central problem is that of assigning the modules of a program 

to the processors of a multicomputer. A module may contain 

either code or data and may communicate with other modules. 

The objective is to find an assignment that minimizes the 

total cost of executing the program. A variant of the central 

problem occurs when all processors execute the same program, 

but on different portions of a large domain, or data set. In 

this case, the domain is partitioned and each subdomain is 

assigned to a separate processor. So the first problem is 

that of assigning the nodes of a computation graph over the 

nodes of a given multicomputer system in order to minimize 

communication overhead. The second problem is that of 

partitioning the domain over the processors of a multicomputer 

system so that each processor has nearly the same 

computational load allocated to it. 

A software system called Prep-P is being developed as a 

tool to help automate a solution to the mapping problem for 

multicomputers [Berman, 1987]. The problem is viewed in a 

context similar to that described by Bokhari (above), and it 

involves making an assignment of processes to processors. 

Prep-P is targeted at machines based on either a fixed or 

configurable communication network between processors and the 
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computation is modeled as a network of communicating 

processes. The topology of the process communication graph 

may not be a natural subgraph of the topology of the processor 

interconnection graph or, more commonly, the process 

communication graph may be much larger. The Prep-P system 

implements a particular mapping strategy that starts with a 

graph description of the algorithm and finishes with code that 

executes the algorithm on a parallel architecture simulator 

(the Poker simulator, described in the next section). 

In most, if not all, formulations of the mapping problem, 

we can define metrics to evaluate, or measure, the quality of 

the mapping based on certain parameters of the system. Of 

course, we can define many types of metrics, as we will see in 

later chapters. To calculate the metrics, a mechanism is 

needed to extract values for the parameters of Interest 

relating to system performance. This need has resulted in the 

development of numerous performance analysis tools. 

Performance Analysis Tools 

A number of projects have investigated, at least in part, 

the problem of representing parallel program performance. 

These projects have contributed to the general knowledge on 

multicomputers and analysis tools. This project has matured 

because of their contributions. Several projects have 

provided information about actual concurrent computer systems, 

which we are currently lacking. Two of these projects, 

Seecube and Hypervlew, are discussed first. These are closely 

related to our work and were studied in depth. We then 

discuss PARET, PAW, Poker, B-Hive, PIE, Balsa, IPPM, PM, 
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LTRAMS, and Victor. Note that the names used may denote the 

project, the tool, or both. The projects are at various 

stages of development. A few were initiated only within the 

last couple of years, and none existed a decade ago. At the 

present time, there is a rapidly growing interest in tools to 

support performance analysis of multicomputers. Tools that 

use visualization techniques to represent program performance 

are especially relevant and are highlighted here. 

Seecube, one of the first tools of its kind, allows the 

programmer of a hypercube computer, originally the Intel iPSC 

computer and currently the NCUBE computer, to visualize 

communications within a parallel program [Couch, 1988]. It 

uses post-processing of records of local events from each 

processor to reconstruct the global state of the computer at 

any time during a computation. There are several graphical 

representations of the state data, including; 3-cubes in 

space, 3-d Karnaugh map, linear plot, log butterfly plot, 

ordered circle, gray code circle, and Pascal triangle. These 

representations are different ways to organize n-dimensional 

plots in a plane, and they support up to about six dimensions 

(or sixty-four processors). There are three parts within 

Seecube: the Data Collector, the Resolver, and the Sequencer. 

The Data Collector is implemented as a library of 

communication routines on the hypercube that invisibly (as far 

as possible) store diagnostic event traces in local memory on 

each processor. At the end of computation, these traces are 

collected from each hypercube node processor and stored on the 

host processor. The Resolver cross-references these traces by 

matching sends with corresponding receives and sorts the 

traces into a single global trace for the entire hypercube. 
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Then the Sequencer graphically and dynamically displays the 

results of the Resolver. 

Seecube is now part of a larger tool called Triplex, a 

collection of software tools which aid the programmer in 

implementing algorithms on the NCUBE multiprocessor. The 

tools address the problem of understanding the behavior of 

parallel programs in terms of both correctness and 

performance. Triplex has three components; the Simplex 

operating system for the NCUBE, the Commplex networking 

package for communication with the NCUBE from Sun 

workstations, and the Seeplex color graphics program for 

viewing depictions of program execution. Simplex supports the 

development of tools for real-time and offline debugging and 

performance monitoring. When Simplex is loaded, it 

synchronizes the local clocks on all nodes and maintains this 

synchrony. It provides out-of-band transmission (higher 

priority and reliability than other data transmissions) of 

system monitoring data of two kinds: (l) summary statistics, 

which summarize computational conditions at each instant in 

time, and (2) event statistics, which record histories of 

significant events. 

An event happens locally within a processing node. The 

interaction of an outside monitor program (such as Seeplex) 

and the event statistics software embedded in Simplex involves 

two activities; (1) the selection of "collection points" to 

be enabled, and (2) the sending out of the stored "notes" upon 

request. The outside monitor program interacts with Simplex*s 

logging capabilities through "parameters". A parameter 

corresponds to a set of collection points that are enabled as 

a group. Summary statistics are collected continuously and 
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reported only upon request. The interaction of the outside 

monitor program and the summary statistics monitor embedded in 

Simplex involves two activities: (1) initiation of reporting, 

including selection of parameters to be collected (done once 

only) and (2) polling for data (done repeatedly). More 

details are available in [Krumme et al., 1989], [Krumme, 

1989], and [Couch, 1989]. 

Tapestry is a project at the University of Illinois (at 

Urbana-Champaign) that provides an experimental environment 

where different computer architectures can be matched to the 

computation requirements of an application's constituent 

algorithms [Campbell and Reed, 1988]. The research includes 

performance measurement, evaluation, and visualization. A 

collection of performance visualization tools called HyperView 

supports dynamic performance displays for viewing event 

traces. Included in the set of display views are: dials, bar 

charts, LEDs, Kiviat diagrams, matrix views, and general 

graphs. The inclusion of visualization tools is based on 

reasoning that is nearly identical to the motivation for much 

of the work described in this thesis: 

Parallel computer systems are among the most complex of 
[our] creations, making satisfactory performance 
characterization difficult. Despite this complexity, 
there is a strong tendency to quantify parallel system 
performance using a single metric. A complete 
characterization requires both static and dynamic 
characterizations. Static or average behavior analysis 
may mask transients that dramatically alter system 
performance. The importance of dynamic, visual 
scientific data presentation has only recently been 
recognized. Large, complex parallel systems pose equally 
vexing performance interpretation problems. Data from 
hardware and software performance monitors must be 
presented in ways that emphasize important events while 
suppressing irrelevant details. [Campbell and Reed, 1988] 
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Hyperview dynamically displays architectural and system 

activity via numerous system views. Detailed performance 

measurements also are provided via standard statistical 

displays. It was inspired by Seecube, and many displays were 

borrowed from Seecube. Whereas Seecube was built for the 

SunView window environment, Hyperview is based on the X window 

environment. Hyperview contains three cooperating modules: 

(1) data capture, (2) state analysis, and (3) visualization. 

A hardware monitor for the iPSC/2 hypercube is integrated with 

the performance visualization system (recall, Seecube uses a 

software monitor for the NCUBE). Tapestry researchers feel 

that the hardware support is crucial to the capture of 

detailed performance data. More information is available in 

[Rudolph and Reed, 1989], [Malony, 1989], and [Reed, 1989]. 

PARET is the Parallel Architecture Research and 

Evaluation Tool [Nichols and Edmark, 1988]. It is a software 

package that provides a multicomputer system laboratory for 

studying: (1) the interaction of algorithms and 

architectures; (2) the effects of varying physical resources 

on system performance; and (3) alternate mapping, scheduling, 

and routing strategies, both static and dynamic. Through 

simulation, users exercise multicomputer models and study 

performance in an interactive and animated environment. 

Algorithms and architectures are displayed as directed flow 

graphs. It also provides both runtime and summary statistics. 

PAW is the Performance Analysis Workstation for queueing 

networks [Melamed and Morris, 1985]. The network is animated 

during simulation, and the user can control simulation 

parameters. A simple graphical representation of a network of 

arbitrary topology shows message passing by moving symbols 
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from one box to another on a graphical display. 

The Poker system was originally planned to emulate a very 

specific architecture, CHiP (the Configurable Highly Parallel 

Computer) [Snyder, 1982], although it has been extended to the 

Cosmic Cube [Snyder 1984]. Poker has separate windows that 

allow the user to focus on different multicomputer functions 

such as setting the switches to create a particular 

interconnection, assigning processes to processors, and 

writing the code for a particular process. Though it is not 

directly related to performance analysis, it provides a good 

view of the multicomputer. 

The B-Hive project measures static properties of 

processor interconnections to select the best candidate 

topologies to execute an application program [Agrawal et al., 

1986]. To select the best architecture for a particular 

application and initiate a simulation of the execution, the 

directed flow graphs representing parallel software are 

allocated to undirected graphs representing the 

interconnection. Simulation results are in summary form, 

consisting mainly of execution times, average utilizations, 

and average path measures. 

PIE is the Programming and Instrumentation Environment 

for parallel processing [Segall and Rudolph, 1985]. It is 

specific to a particular shared memory system, but its 

designers expect it to be translatable to other systems. It 

supports the shared dataspace model of concurrent computation 

and tuple-based programming languages such as Linda. PIE 

provides an animated graphical representation of program 

objects and their relationships. During execution, several 

graphical displays show the status of the computation, 
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including a dynamic invocation tree, which shows utilization 

of processes and processors, and a bar graph, which shows 

cumulative statistics. 

IPPM, the Interactive Parallel Program Monitor, was 

written as a debugging aid for the Intel iPSC [Brandis, 1986]. 

It monitors communication events on each processor by sending 

event debugging messages to the host. The host filters the 

events reported and stores an ordered event trace. 

Simultaneously the event trace is graphically displayed on a 

workstation. 

Currently only for depicting sequential algorithms, 

Balsa, the Brown University Algorithm Simulator and Animator, 

creates an algorithm animation environment [Brown, 1988]. It 

is one of the most advanced and widely recognized program 

visualization tools. A user watches execution of an algorithm 

through various views, using graphical displays to explore a 

program in action. "Interesting events" play a key role in 

the animation of an algorithm. Typically, a general plan for 

visualizations of the algorithms is set forth, mainly to 

identify the interesting events in the algorithm which should 

lead to changes in the image being displayed. Then, 

interesting event signals are added to the algorithm. The 

intent of the research is to capture the entirety of an 

algorithm in a single, static picture. 

M is a parallel performance monitor that is one of the 

support tools packaged with EXPRESS, a parallel operating 

environment from Parasoft that runs on multicomputers such as 

transputers, NCUBE, Caltech Mark III, and Intel iPSC [Flower, 

1989]. PM provides information about the execution or 

performance of a parallel program, including; communication 
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times, routines being called, activity on each processor at 

any point in a program, time spent in a routine, and so forth. 

Specifically, three tools are available: (1) the execution 

profiler, which monitors time spent in individual routines; 

(2) the communications profiler, which monitors time spent in 

communications and input/output; and (2) the event profiler, 

which shows the interactions between processors and allows 

user-specified events to be monitored. 

The Victor project at IBM Research in Yorktown involves a 

transputer-based mesh of processor nodes and special hardware 

components associated with the nodes to support monitoring 

performance [Wilcke, 1989]. A color-coded display screen 

shows processor and link activity. Important issues being 

studied via this project include space-sharing (versus 

timesharing) and embedding logical topologies into physical 

topologies. 

LTRAMS, the Loosely-Coupled Trace Measurement System, is 

an instrumentation tool being developed by the National 

Institute of Standards and Technology (NIST) [Roberts, 1989]. 

The tool supports a distributed hybrid (hardware/software) 

monitor measurement approach in which software triggers a 

measurement (or sampling operation) and hardware collects and 

stores the data. A global interrupt yields a snapshot of 

system performance. Important issues being studied via this 

project include grain size, perturbation or disruption effects 

of the monitor, and VLSI implementations of the 

instrumentation. 

A project that has considerable merit but a slightly 

different emphasis than the ones we have already reviewed is 

underway at the University of North Carolina [Snodgrass, 
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1988]. The focus of the project is that a historical 

database, an extension of a conventional relational database, 

provides an effective way to manage information processed by 

the monitor of a complex system. The approach creates the 

conceptual view that the dynamic behavior of the monitored 

(subject) system is available as a collection of historical 

relations, each associated with a sensor in the subject 

system. It entails: specifying the low-level data 

collection, specifying the analysis of the collected data, 

performing the analysis, and displaying the results. The 

eventual goal is to couple the relational model with a 

suitable programming environment to form an integrated 

instrumentation environment. Thus far, the approach has been 

tested via two prototype implementations, one monitoring the 

Cm* multiprocessor system [Swan et al., 1977] and a second 

monitoring the Berkeley UNIX 4.2BSD operating system on a Sun 

workstation. We will return to several of the details of 

this project in the next chapter. 
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CHAPTER III. 

PERFORMANCE MONITORING 

Far better never to think of investigating truth at all than 
to do so without a method. 

Rene Descartes 

In Chapter II, several performance analysis tools are 

highlighted. The objective in developing any analysis tool is 

to use it to gain a better understanding of system performance 

within some context. In fact, tools become a necessity in 

order to properly investigate the basic principles associated 

with the behavior of complex computer systems. Even though 

each tool may use slightly different mechanisms to investigate 

the principles, it is significant that the tools apply a 

method to evaluate performance. An appropriate method and a 

good implementation of the method can help convert a disparate 

collection of results into a meaningful, coherent model. In 

this chapter, we focus on monitoring as a method of evaluating 

performance. Furthermore, this and the following chapter 

present a framework that creates an integrated environment for 

performance measurement and visualization. 

Evaluation Methods 

Performance measures can be obtained by applying the 

following evaluation methods: 
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• benchmarks 
• monitoring (hardware or software) 
• emulation 
• simulation 
• analytical modeling 

For the projects reviewed in the preceding chapter, an 

assortment of methods is applied. PARET, PAW, B-Hive, and 

Balsa use simulation. Poker uses software emulation. 

HyperView, Victor, and LTRAMS are coupled with hardware 

monitors, while Seecube, IPPM, PM, PIE, and the relational 

approach interact with software monitors. Benchmarks and 

analytical modeling have been applied to multicomputers as 

well [Reed and Grunwald, 1987]. Each method has advantages 

and disadvantages when critiqued in areas such as accuracy, 

complexity, and flexibility. Unfortunately, no method 

achieves the best marks in all areas. So, we must choose a 

method that satisfies our particular needs. 

The choice of a method is driven by these factors; our 

interest in studying the dynamic behavior of a complex 

multicomputer system, and our preference for a scheme the lets 

us capture the peculiarities of actual programs running on an 

actual computer. Given these requirements, monitoring is the 

method to be used. Though much has been written about 

monitoring uniprocessor systems, how monitoring should be done 

for multicomputer systems is under study. In the remainder of 

this chapter, we summarize the present approaches to 

monitoring multicomputer systems and consider several of the 

issues that influence implementations of monitors. Though we 

simulate a distributed monitor in the prototype system 

described later, developing and verifying an actual monitor 

are beyond the scope of the work reported here. However, we 
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should note that a monitor is truly the heart of a performance 

measurement system and much work remains to be done in the 

area of monitoring multicomputer systems. 

Monitoring, or instrumented execution, is the extraction 

of dynamic information concerning a computation as the 

computation proceeds. It involves observing and recording 

information at particular points in the computational system. 

The points may be positions in the spatial domain of the 

system or moments in the temporal domain of the system. A 

monitor may be implemented in hardware, firmware, or software, 

or some combination of the three. A hardware monitor consists 

of probe-type circuitry physically built into the machine. A 

software or firmware monitor typically includes special 

routines (or sections of code) augmented for data generation, 

collection, and analysis. Some form of hardware support is 

being included in most present and future systems; for 

example, a hardware-assisted software monitor may consist of 

software that generates the monitoring data and hardware that 

captures (that is, collects and stores) the data. Ideally, a 

monitor should be transparent to the user, implemented at the 

system level rather than the application program level. Two 

possibilities include compiler instrumentation and operating 

system instrumentation. These approaches permit access to 

useful system level information and automatic compensation for 

monitoring artifact and measurement inaccuracies. 

A note on terminology to ensure clarity may be useful at 

this point. We have used and will use the term "monitor" and 

its related forms in varying contexts. Interpretation within 

the specific context should avoid confusion. Because the 

adjective form "monitorial" is rather awkward to use, the noun 
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form "monitor" or verb form "monitoring" may be used as an 

adjective. For example, "monitor data" or "monitoring data" 

may refer to the data processed by the monitor. Other 

examples include "monitoring granularity" and "monitoring 

artifact". In these examples, the term "measurement" can be 

used interchangeably with "monitor" (or "monitoring"), for 

example, "measurement data". In addition to being used as an 

adjective, the term "monitoring" may be used as a noun. 

Monitoring is a fundamental component of many computing 

activities and has two primary applications; (1) debugging of 

programs and (2) measuring (or tuning) performance. It is a 

first step in understanding a computation, for it provides an 

indication of what happened, thus serving as a prerequisite to 

determining why it happened. Though a monitor may support 

both debugging and measurement, the two activities have 

certain distinctions. Debugging is typically done from a 

programming viewpoint, while performance tuning may be from a 

programming or engineering viewpoint. Debugging places more 

stringent requirements on the role of the monitor. A monitor 

should be able to support user interaction in real-time during 

program execution; to suspend, single-step, and resume the 

program execution; and to symbolically access program 

information, such as code and variables. A monitor that 

supports performance measurement also requires feedback from 

program execution, but it may be able to use post-processing 

of data rather than real-time processing, which eases some 

requirements. But other obstacles remain. For example, data 

management, particularly data storage, becomes a greater 

concern. Further, a monitor needs to handle a potentially 

large number of statistical calculations and should provide an 
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interface to a graphical display. Finally, though the monitor 

inevitably affects the performance it attempts to measure, its 

perturbations should be minimal so that it remains a useful 

tool for evaluating performance. Present monitors are being 

developed for both applications; however, in accord with the 

objectives of this work, we focus on performance measurement. 

Before proceeding with a discussion about monitoring 

multicomputers, a few general comments about instrumentation 

may be helpful. A subject system or target system is the 

program and machine being monitored. The additions to the 

subject system to accomplish performance measurement comprise 

the instrumentation. A collection point [Couch, 1989] or 

sensor [Snodgrass, 1988] is a mechanism (for example, a 

hardware probe or system routine) that captures performance 

data concerning an event within the subject system. An event 

is viewed as occurring instantaneously and reflects a change 

in the state of the system. Thus, a state has some time 

duration and is demarcated by the events that caused the 

transitions to it and from it. More specifically, an event is 

associated with a change in the values of one or more 

parameters of interest. 

To observe the behavior of the system, we track the 

values of specified parameters during program execution and 

generate a list of changes in their values, in other words, 

we log occurrences of events. The list is called an event 

trace, and the elements of the list are called notes [Couch, 

1989] or data packets [Snodgrass, 1988]. A data packet may be 

as simple as a bit that is complemented when the event occurs 

or as complex as a long record containing system data. 

Typically, a data packet encodes information that includes 
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event type, parameter name, parameter value, and a time stamp. 

If the event is detected and the information logged when the 

event occurs, data packets are called traced data packets, and 

their generation is synchronous with the event. Alternatively, 

sampled data packets are logged only via an external request, 

and thus their generation is asynchronous with the event. 

Enabling a sensor allows it to detect events and generate data 

packets when events occur. Sensors may be enabled and 

disabled via flags. A traced sensor, which generates traced 

data packets, is enabled in the above sense; a sampled sensor, 

which generates sampled data packets, is triggered at selected 

times. Filtering is the removal of irrelevant data packets 

before they are completely processed by the monitor. 

In contemporary implementations, monitoring may be 

summarized as consisting of three phases; (1) data 

collection, (2) data analysis, and (3) data display. More 

specifically, monitoring consists of a series of steps 

[Snodgrass, 1988]: 

(1) sensor configuration, which involves deciding what 

information each sensor will record and where the 

sensor will be invoked; 

(2) sensor installation, which involves coding sensors 

(if in software) and defining temporary and permanent 

storage of collected data; 

(3) enabling sensors, which permits some sensors to be 

permanently enabled, storing monitoring data whenever 

executed, and others to be individually or 

collectively enabled; 

(4) data generation, which involves executing the subject 

program and storing the collected data; 
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(5) analysis specification, which involves deciding what 

statistics to compile, usually done via a menu of 

available statistics or a simple command language; 

(6) display specification, which involves deciding how to 

view the data, usually done via a menu of formats, 

ranging from a list of data packets printed in a 

readable form to standard reports to simple graphics; 

(7) data analysis, which usually occurs in batch mode 

after the data have been collected; and 

(8) display generation, which usually occurs immediately 

after data analysis. 

Steps one through four comprise the data collection phase; 

steps five and seven, data analysis; and steps six and eight, 

data display. Most monitoring systems include these eight 

steps, although the ordering and composition may differ 

slightly. 

Monitoring Complex Systems 

Thus far, we have considered monitors in general. 

However, monitors for complex systems demand special 

consideration. Two important distinctions relevant to 

monitoring include: (1) complex systems often exhibit a lack 

of central control, and (2) complex systems may consist of a 

very large number of components. In this section, we address 

several problems that result from these characteristics, 

including data storage, clock synchronization, and performance 

perturbations. 

For distributed memory computer systems, a separation of 

the monitor into two components is required: (1) a remote 
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monitor, performing functions requiring close interaction with 

the user; and (2) a resident monitor, performing functions 

requiring close interaction with the subject system. The 

distributed resident monitor exists at each processor, sending 

collected data to the centralized remote monitor. 

Functionally, the resident monitor collects the data packets 

and (possibly) interacts with the operating system, and the 

remote monitor analyzes and displays the data. Data 

collection is divided between the sensor storing the data 

packet in a buffer and the resident monitor extracting the 

data packets from the buffer and assembling them into larger 

packets to be sent to the remote monitor. 

Collected data is stored in a memory buffer on each 

processor node. If the program execution time is small 

enough, or the buffer large enough, this approach may be 

sufficient to handle data storage needs. Several options 

exist when the buffer size is insufficient, including 

terminating logging, using a circular buffer [Couch, 1989], 

using a partitioned buffer [Rudolph and Reed, 1989], using a 

disk buffer, data streaming, filtering, and distributing the 

analysis. Data storage requirements vary depending on the 

implementation. Sensor control is particularly important, 

since a complex system has a potentially large number of 

sensors. A brute-force enabling of all sensors is excessively 

inefficient, since more storage is needed if all data are 

first collected and then analyzed. Alternatively, less 

storage is needed if the desired information is specified 

before any actual data are collected. Hence, only the 

necessary sensors should be enabled, thereby filtering out 

unnecessary data packets. Filtering should occur early and 
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often, so that scarce storage, processing, and communication 

resources are not expended on data that are later discarded. 

In fact, in terms of the resources in a complex system, it is 

likely impossible to store data on every event when many 

sensors are present. Powerful filtering techniques could even 

enable and disable sensors based on previously received data. 

However, achieving high degrees of filtering requires 

additional storage and processing to determine if a sensor is 

indeed enabled. This is expensive in an environment 

supporting many entities. Optimally, we want to enable the 

minimum number of sensors and perform just the computations 

needed to derive the desired information. Substituting 

sampled sensors for traced sensors where feasible can also 

reduce data storage overhead. 

The data analysis generally occurs at a central node that 

hosts the remote monitor. The data packets are sent to this 

node from buffers in the processors where the sensors were 

located that generated the packets. However, much of the 

analysis could occur locally, with only that analysis 

requiring more global information being performed remotely 

(i.e., at the host). This distribution of analysis reduces 

the amount of data stored and also the amount of data 

transmitted between resident and remote monitors. Clearly, it 

is beneficial to limit the data transmissions between resident 

and remote monitors, both to limit the possible effects on 

application program performance and to keep the transmission 

rate within the bandwidth of the communications network. 

Another issue that surfaces is the lack of a global 

clock. On most distributed systems, each processor has an 

independent clock. The data packets generated by the sensors, 
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however, contain time stamps that are supposed to represent 

global times across the entire system. We cannot use 

unsynchronized local clocks for timestamping events if we 

expect to merge the event traces from all processors based on 

the time stamps. However, it is theoretically impossible to 

synchronize imprecise physical clocks over a distributed 

network with nondeterministic transmission times [Lamport, 

1978]. But it is possible to implement a time-keeping 

algorithm that maintains a global clock with a bounded 

imprecision. The algorithm ensures that a message is received 

at a global time that is later than the global time at which 

the message was sent, and it preserves a partial ordering of 

local events. The distributed algorithm can be implemented in 

the operating system to effectively synchronize clocks on all 

processors. If the operating system provides a reliable and 

fault tolerant communication mechanism, supporting recovery 

from lost messages or crashed processors, then a global clock 

is probably already computed by this mechanism. 

Alternatively, it is possible to synchronize the clocks using 

a global, serial connection to all processors [Rudolph and 

Reed, 1989]. Because the clocks may still drift at a rate 

large enough to affect the merging, a correction for any 

drifting is typically included as the traces are merged. More 

sophisticated approaches to clock synchronization are still 

being developed. 

A monitor inevitably affects the performance it attempts 

to measure due to the instrumentation and to the storage, 

processing, and communication overhead of event data in the 

system. The effects are sometimes called performance 

perturbations or monitoring artifact and may significantly 
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degrade application program performance. Though there exist 

ways to reduce the overhead, it cannot be eliminated. Hence, 

a minimal performance penalty is usually accepted, and 

perturbations are prescribed to be within certain allowable 

limits. Generally, the more measurements taken, the greater 

the perturbation of the system. One approach to limit the 

perturbation for many measurements is to make many separate 

measurements and combine the results. In any case, to present 

accurate performance measurements, the monitor should be 

designed to compensate for the effects. 

Many of the problems encountered with complex systems are 

merely a result of the size of the system. Though systems 

continue to grow larger, the endless quest for a truly 

scalable machine reveals the difficulty of building real 

systems that have minimal scaling effects. Clearly, if it is 

difficult to build a system that scales well, it is not easy 

to build a monitor, overlooking this system, that scales well. 

We have already mentioned some of the problems of scale in 

collecting a large volume of performance data. The remaining 

chapters introduce a possible solution to problems of scale in 

representing a large volume of performance data. The solution 

may also help us to better understand scaling effects within 

the machine. There is a pressing need in the study of complex 

systems to effectively deal with scalability and problems of 

scale. 
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Data Mêmagement 

In an abstract sense, monitoring is concerned with 

retrieving information and presenting this information in a 

derived form to the user. Hence, the monitor is an 

information processing agent, with the information describing 

time-varying relationships between entities involved in the 

computation. In fact, the sensors associated with the monitor 

consume information as input and then generate information as 

output in the form of event records. In simplistic terms, 

tables of event records are created at each processor, 

describing local behavior, and then the tables are merged into 

one or more tables describing global behavior. We might find 

this organization of data fairly manageable, at least 

conceptually, since tables are such a familiar construct. 

However, because the tables are possibly very large, we need 

efficient and effective ways to access and present the 

information contained in them. 

It may be illustrative to comment on one way to access, 

and in general manage, the tabular information, before looking 

at ways to present the information. Snodgrass has developed 

formalizations of the information processed by a monitor and 

proposed that the information can be perceived as a relational 

database [Snodgrass, 1988]. He differentiates four types of 

databases by their ability to support temporal information: 

snapshot, rollback, historical, and temporal [Snodgrass and 

Ahn, 1986]. Furthermore, he suggests that the historical type 

is appropriate for monitoring because of its ability to model 

the dynamic state of a computation [Snodgrass, 1988]. At a 

glance, the historical type of database is a natural way to 
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view monitoring information. When information is stored to 

update the status of the system, event data is recorded along 

with a time stamp in an event record (or data packet). 

Instead of a new event record overwriting an old one, event 

records are preserved (at least until processing is done), and 

the time stamp is used to give a partial ordering of the event 

records in the event trace. So the state of the system at a 

particular moment in time can be reconstructed from the most 

recent event records with time stamps less than or equal to 

the desired time. In fact, the global event trace can be 

conceptually partitioned into any number of tables depending 

on the desired view of the data. Thus, the dynamic behavior 

of the system is available as a collection of tables, or, in 

database terms, relations. In practice, the tables are only 

conceptual and do not actually collectively exist in their 

entirety as data stored either in main memory or in secondary 

storage. 

This fictional database stores primitive or basic 

information that is captured by the sensors. The analysis 

process then produces derived information. Derived 

information typically holds more meaning for the user. 

Flexibility in analysis extends the usability of the tool, 

since (derived) information not anticipated at the time the 

monitor was implemented may still be requested by the user, 

provided the basic information is available to the monitor. 

Some command language is typically provided to specify the 

derived information. The command language may be very 

sophisticated, such as TQuel, the general temporal query 

language for the relational monitor described by Snodgrass 

[Snodgrass, 1988]. However, it is usually simpler, such as 
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the checklist windows of Seeplex [Couch, 1989], or the 

softkeys of various workstation-based tools. 

Each event record in the fictional database has some 

number of fields. One field identifies the time that the 

event occurred. Another field identifies the location where 

the event occurred. Position is denoted by processor number, 

process name, channel number, or similar attributes. The time 

and position attributes are essential if the measurements are 

to reflect the temporal and spatial behavior of the system. 

Other attributes identify and describe the event. Events may 

be placed in categories, including: message-related, process-

related, system-related, and user-defined [Rudolph and Reed, 

1989]. Several events may be associated with message 

transmission, including send request, start of transmission, 

end of transmission, receive request, and actual reception. 

Many of the message events are logged with the sequence number 

of the message. This number is generated by the sending 

processor node; thus, a message's source node and sequence 

number uniquely identify it. This allows event processing 

software to associate send events on the source node with 

receive events on the destination node. Events recording 

entry to and exit from system calls provide information about 

the time consumed by operating system activities (versus user 

activities). System time is typically partitioned according 

to type of system call, including message activity, input-

output activity, system activity (e.g., load balancing), and 

idle (no activity). If multiple processes are supported, then 

process-related events may record context switches between 

processes and identify currently executing processes (or 

objects in an object-oriented environment). Finally, user 
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events are triggered by the application program, usually via 

special operating system calls. These may record sections of 

code passed or values of variables. 

At a fundamental level, the fictional database is just a 

table or set of data. By definition, it is a collection of 

multivariate data, because it involves a group of entities 

about which we have several quantitative measurements. The 

entities are the processors and processes in the concurrent 

computer. Data on these entities have been called 

observations, events, records, notes, and packets (among other 

similar terms). The different measurements have been referred 

to as variables, attributes, fields, metrics, and parameters 

(again, among other similar terms). By viewing the data in 

the sense of multivariate data, we have at our disposal 

powerful techniques for analyzing and displaying the data. We 

will return to this idea in Chapter V. 

Perspectives 

The state of the computer system, and thus system 

performance, can be viewed from different perspectives. Here, 

perspective refers to observational viewpoint or frame of 

reference. Different perspectives provide different pieces of 

the performance puzzle. 

Three types of perspective are possible: 

(1) program (algorithm or software), 

(2) architecture (logical network), and 

(3) machine (physical network or hardware). 

A program perspective shows the flow of control and data in 

terms of algorithm entities (e.g., processes or data 
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structures). A notation for this typically uses two or more 

dimensions, including flowcharts, graphs, diagrams, or icons. 

A similar notation may be used for an architecture 

perspective. An architecture perspective highlights the 

logical structure and interaction of the components in the 

computer system (e.g., processors and channels). A machine 

perspective focuses on the implementation of the architecture 

in two- or three-dimensional space. The machine perspective 

could extend down into a circuit-level description of the 

hardware. 

Figure 3.1 contains an example illustrating the 

relationships among these three perspectives. The program is 

represented via a process communication graph. The 

architecture is assumed to be a three-dimensional (eight-node) 

binary hypercube and is represented by a node interconnection 

graph. Finally, the machine is a two-dimensional geometrical 

layout, where each cell in the layout denotes a node within 

the computer system. Observe that Figure 3.1 also describes 

the process that maps a program onto a machine to achieve 

optimal performance. As presented in Chapter II, a 

substantial amount of research work has focused on the first 

two perspectives and on the associated mapping between 

algorithm and architecture. The remaining chapters describe 

the work we have done to also focus on the last perspective 

and on the mapping onto the machine. 

Continuing with our discussion of perspective, we can 

define two levels of perspective: 

(1) microscopic (low-level) and 

(2) macroscopic (high-level). 

A microscopic perspective focuses on the individual components 
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Figure 3.1. Three perspectives on system performance: 
program, architecture, and machine 



www.manaraa.com

48 

of the system and evaluates each in isolation. Specific 

behavior can be inspected in detail. A macroscopic view 

reflects the overall behavior of the collection of components. 

Aggregrate (or global statistical) measures of performance can 

be obtained. The behavior of any component is analyzed in the 

context of all components. 

The levels of perspective are associated with monitoring 

granularity. Monitoring granularity refers to the "size" of 

the entities or events that are observed by the monitor. The 

grain size influences the location and implementation of the 

sensors in the subject system. The grain size may range from 

less than one instruction to the whole program. Fine grain or 

low level monitoring involves tracing at the level of 

processor instructions, where new instructions change the 

state of processor registers, memory, and so forth. Fine 

grain monitoring requires hardware (or hardware-assisted) 

sensors. Medium grain or intermediate level monitoring 

involves tracing at the level of primitive operating system 

routines. The activities being monitored typically cause 

local state changes and may include interprocessor 

communication, input-output, and context switching. Hardware 

or software sensors are applicable to medium grain monitoring 

(with the obvious cost and performance tradeoffs). Coarse 

grain or high level monitoring involves tracing at the level 

of sophisticated operating system routines, such as collective 

communication routines or load balancing routines. The 

activities being monitored cause global, system-wide state 

changes. In essence, local state changes are lumped together 

and their effect as a whole is observed rather than the 

individual effects. Coarse grain monitoring results in the 
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smallest overhead on system resources and the least amount of 

detailed information. Software sensors are usually 

sufficient. Depending on the implementation of the monitor, 

information at particular levels in the subject system may be 

outside of the scope of the instrumentation and thus may be 

inaccessible for inspection. 

In succeeding chapters, we use our knowledge about the 

nature of the monitor and the information that it processes to 

develop appropriate views of the information, views that will 

enhance our understanding of system performance. 
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chapter iv. 

representing performance 

Alice declared: "Dear, dear! How queer everything is today! 
And yesterday things went on just as usual. I wonder if I've 
been changed in the night? Let me think: was I the same when 
I got up this morning? I almost think I can remember feeling 
a little different. But if I'm not the same, the next 
question is 'Who in the world am I?' Ah, that's the great 
puzzle!" 

Lewis Carroll, from Alice's Adventures in Wonderland 

In this chapter, we move closer to the emphasis of this 

work, which is perceiving and understanding program 

performance on concurrent computers. The preceding chapter 

explored the monitoring of multicomputers in terms of complex 

systems. Given the abundance of monitoring information, we 

now turn to visualization. We examine ways to represent 

performance data, first presenting a spectrum of alternatives 

and then selecting appropriate representations for 

multicomputers. 

Data Presentation 

Performance data that are collected need to be analyzed 

and then presented in some meaningful format. Roughly, the 

analysis tells us what to look at, and the presentation tells 

us how to look at it. Data presentation should reflect the 

environment of a computation, because environmental conditions 

largely dictate system performance. That is, we typically 
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need to couple quantitative measurements of the system with 

qualitative observations. 

As an example, Reed gives an illuminating analogy 

regarding peak versus actual (or achieved) performance [Reed, 

1989]. When you need to drive someplace, say the grocery 

store, can you predict how much time it will take? Of course, 

it depends on how fast you can drive your car. Is it 

reasonable to expect peak performance? That is, if your car 

is capable of going, say, ninety miles per hour, is that the 

speed at which you will travel? Clearly, that is not very 

likely. It is more likely that your speed will vary along the 

way, depending on the streets traveled, the traffic, traffic 

lights, time of day, weather, accidents, and so forth. At 

best, you can estimate your average speed, and use it to 

predict your travel time. Although actual performance is more 

useful than peak performance, it does not tell us much about 

the actual trip. We may expand on Reed's analogy to expose 

the need and usefulness of more details. For example, if 

travel time is longer than might be expected, why is it? 

Traffic may be slowing to a halt at a heavily used bridge. In 

other words, we need to record specific times and places to 

fully explain performance. In terms of computer systems, 

single number performance measures may be of some use, but we 

may also need to be presented with a detailed account of when 

and where events occurred. 

So, of the possible performance scenarios for complex 

systems, some are more informative than others. A single 

number such as peak performance or speedup is coarse and 

without insight. Another single number, the mean value of a 

distribution over all processors, has more information 
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content, but focuses on one particular moment in time. It 

isolates when events were observed. Alternatively, a timing 

profile focuses on one particular position in the system, say 

a processor. It isolates where events were observed. 

A timestamped event trace, though selective in its 

information content, comes closest to providing a detailed 

account that includes both when and where events occurred. We 

can view an event trace in several forms, including textual, 

statistical, and graphical. Textual form comprises a raw 

listing of the sequence of individual events. The large 

number of events typically logged for a complex system makes 

this form impractical for manual performance evaluation. 

Statistical form is a compilation of statistics extracted from 

the event trace. The statistics are typically timing and 

counting metrics that give static insight about computation 

and communication activities. Graphical form involves visual 

display of information from the event trace and is especially 

powerful if coupled with animation. Animation is the process 

of stepping through the event trace and updating a display as 

time progresses. There are many possible types of data 

displays, including bar charts, line graphs, matrix diagrams, 

and general graphs, to name a few. Animated visual displays 

provide dynamic insight about computation and communication 

activities. 

Categories of Concurrent Computers 

As discussed in the previous section, measurement data 

should be presented in some meaningful format. Because 

formats have different capacities for conveying information. 
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the type of format to be used depends on the nature and volume 

of the data to be presented. The nature and volume of 

measurement data are determined by the computer system being 

observed. In this section, we suggest a categorization of 

computer systems that relates to the data generated during 

performance monitoring. The intent is to create a framework 

for the performance formats developed in the next chapter. 

First, let us propose a metric that is proportional to 

the potential volume and variability of monitoring data; call 

it the complexity coefficient, CC. Let the complexity 

coefficient represent the information-bearing capacity of the 

computer system under study (including both processing-related 

and communication-related information). For our purposes, the 

complexity coefficient has the following definition: 

CC = a»n + b«n 

where n is the number of processors (computer size), a is the 

number of bits per processor (processor size), and b is the 

product of the number of channels, or neighbors, per processor 

(network dimension) and the number of bits per channel 

(channel width). So, roughly, CC is the sum of the processing 

and communication capacities of the system, measured in bits. 

A larger complexity coefficient means a potentially larger 

volume of monitoring data, and this places greater 

requirements on formats for presenting the data. The 

information-conveying capacity of the presentation format 

should meet or exceed the information-bearing capacity of the 

computer system under study. Of course, the actual features 

of the data set also depend on the application program, but a 

metric independent of the program is sufficient for this work. 

Via the complexity coefficient, complexity categories can be 
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established with each category having some range of CC. A 

computer system is then placed in a category depending on its 

calculated value of CC. This provides a basis for comparing 

computer systems. 

Next, let us identify the types of data presentation that 

may be assigned to the complexity categories. Two definable 

features of data presentation are performance perspective and 

performance format. The types of performance perspectives 

include; program, network, machine, microscopic, and 

macroscopic. These were discussed in Chapter III. Each type 

of performance format fits into one of three representations; 

(1) single number, (2) table, or (3) graph. More 

specifically, the formats include; 

• raw datum 

• statistical datum 

• table of data 

• program flowchart 

• program graph 

• network graph 

• basic chart 

• ordered network graph 

• multivariate (multidimensional) data plot 

A raw datum is a single number performance indicator, 

such as execution time, network bandwidth, or processor 

throughput. A statistical datum is an aggregate measure, 

possibly a spatial or temporal average, such as average 

network latency. A table of data is any listing or collection 

of textual data, including the actual event trace and a 

compilation of raw or statistical datums. A basic chart, such 

as a two-dimensional line or bar chart, is the traditional 
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mechanism for displaying data. A program flowchart is a 

conventional icon-based control or data flow diagram 

illustrating program operation. A program graph is a general 

graph with nodes and edges that depicts the process or object 

structure of the program. Here, structure refers to the 

topology or connectivity of the constituent components, which 

are shown as nodes, and an edge or connection implies 

communication between the two adjoining nodes. 

A network graph, on the other hand, is a general graph 

that depicts the processor structure, from an architectural or 

logical viewpoint. An ordered network graph is a network 

graph in which the nodes are placed in a special pattern, such 

as a gray code circle representation for a hypercube topology. 

Finally, a special kind of multivariate (or multidimensional) 

data plot that we refer to as a machine plot is a two- or 

three-dimensional geometrical layout. It illustrates 

processor configuration and information about the processors. 

Machine plots will be discussed in more detail in the next 

chapter. 

Table 4.1 pairs complexity categories with appropriate 

types of performance perspectives and formats. Recall, the 

capacity of the data presentation mechanism to convey 

information should meet or exceed the processing and 

communication capacities (given as the complexity coefficient) 

of the computer system under study. In a rather coarse but 

elucidative partitioning of the full range of complexity 

coefficients, five overlapping complexity categories are 

marked out. Each category corresponds to a particular type of 

computer system, and the overlap results from similarities 

among the systems. Despite the overlap, the ranges of 
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complexity coefficients have distinguishable bounds and 

largely depend on system size. The five systems we use for 

comparison are: uniprocessor, bus multiprocessor (shared 

memory), small multicomputer, medium multicomputer, and large 

multicomputer. The multicomputer distinctions are consistent 

with a description given in [Reed and Fujimoto, 1987]. 

Further, no assumptions are made about the multicomputer 

network topology, and the topology can range from a ring to a 

mesh to any k-ary n-cube (cubes with n dimensions and k nodes 

in each dimension, of which the binary n-cube is a special 

case). Also, we should note that the values used to define 

the computer systems are realizable with present technology 

but may not exist in current systems; so the ranges are broad, 

and actual values would tend to cluster in fairly narrow 

regions. The upper bound for channel width results from a 

discussion in [Dally, 1987] about VLSI wiring density and pin 

count limitations. 

Observe the following by examining Table 4.1. The larger 

computer systems require more global, hierarchical approaches 

to representing performance. Though we still benefit from 

access to low-level details, or a microscopic view, we first 

need to see the higher levels, or a macroscopic view, so that 

we are not overwhelmed by the details. Also, the increasing 

importance of accurately accounting for both time and space as 

systems scale up leads to visualization of performance data in 

the context of the machine, not just the program or the 

network. The more traditional formats, including numbers, 

tables, and flowcharts, break down under the additional 

complexity of large systems. Even general topological graphs 

are not sufficient for very large systems. These formats 
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Computer System Complexity System Data Presentation 
System Processor Network Channel Channel Coefficient Type Performance Performance 

Size Size Dimension Width Size Perspective Format 
(n) (a) (bj) (62) (b=bj*b2) (CC=a*n+b*n) 

1 1-32 0 0 0 1-32 uniprocessor P, Mi N1,T, G1,G4 

2-50 1-32 1 1-16 1-16 4-2400 bus P. N, Mi NI. T. Gl, G2. 
multiprocessor G3, G4 

10-100 1-32 1-6 1-16 1-96 20-12800 small P. N, Mi NI, N2. T, Gl, 
multicomputer G2, G3, G4, G5 

100-1000 1-32 2-9 1-16 2-144 300-176000 medium P, N, M, N2, G2, G3, 
multicomputer Mi, Ma G4, G6 

1000-/ 1-32 2 ! 1-16 2-1 3000-/ large P, N, M, N2, G4, G6, (G2, oi 
multicomputer Ma, (Mi) G3) ^ 

Perspective: 
P = program 
N = network 

M = machine 
Mi = microscopic 

Format: 
NI = raw datum 
N2 = statistical datum 
T = table of data 

Gl = program graph; iconic 

G3 = network graph: topological 
G4 = basic chart 
G5 = network graph: ordered 
G6 = machine plot: geometrical 

Ma = macroscopic G2 = program graph; topological 

0 ; indirectly used, via a hierarchical selection mechanism 
1 ; infinity 

Table 4.1. Complexity categories for performance data 
presentation formats 
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simply cannot convey enough information at a glance. Though 

the traditional formats are still very useful for viewing 

isolated parts of the system, new formats for viewing the 

system as a whole are essential. One of these formats, called 

a machine plot, has been developed as part of this work and is 

described in the next chapter. Finally, for an accurate and 

(sufficiently) complete understanding of system behavior, it 

is important to have a wide variety of views and 

interpretations of monitoring data. 
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CHAPTER V. 

pictdiœs of performance 

Nothing ever becomes real till it is experienced — even a 
proverb is no proverb to you till your life has illustrated 
it. 

John Keats 

The previous two chapters presented a framework that 

supports the measurement and representation of performance 

data associated with (possibly) large concurrent computers. 

We have developed a methodology for pictorially displaying the 

performance of multicomputer systems that is consistent with 

this framework. This chapter describes the methodology and 

defines novel metrics and graphics. 

Methodology 

The method we have developed for "picturing" the 

performance of multicomputer systems creates a laboratory for 

observing, analyzing, and displaying performance. A prototype 

implementation that demonstrates the approach, including 

simulated results from several case studies, is presented in 

the next chapter. Four key elements of the approach are: 

(1) Observation and measurement of performance via 

instrumented execution of actual and synthetic 

benchmark programs. 

(2) Analysis and reduction of performance data via 
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appropriate techniques. 

(3) Calculation of aggregate measures of system behavior. 

(4) Visual display of program performance via a computer 

graphics format that illustrates computation and 

communication activities in time and space within the 

machine. 

The fully-equipped laboratory configuration consists of 

these components: 

• multicomputer (real or simulated system) 

• distributed software monitor (possibly with hardware 

support) 

• benchmark generator 

• graphics workstation 

• program database 

• machine database 

• event database 

• statistical analysis tool 

• visual analysis tool 

Each of these components may be a highly capable subsystem by 

itself. Quite a bit of development activity still remains to 

be done in each area. Even more is needed to integrate the 

components into a functioning enterprise. Thus, while much 

work would be required to fully implement this laboratory, the 

prototype described in the next chapter demonstrates that the 

approach is both feasible and powerful. 

Though an actual multicomputer is the intended target 

system, the method works fine in conjunction with a 

multicomputer simulator, which may be the only operational 

form of the system in the early stages of development. The 

software monitor is an instrumented version of the operating 
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system and, given an actual multicomputer, may be assisted by 

a hardware monitor. Special operating system routines log 

events of interest at each node, so each node maintains a 

trace that delineates its computation and communication 

activities. Upon program completion, the event traces from 

all nodes are combined into a global event trace, which forms 

the event database described in Chapter III. Depending on the 

implementation of the monitor, post-processing of event data 

may be coupled with real-time processing. Whether retrieved 

from the nodes during or after program execution, event data 

is processed to reconstruct program state information and 

extract other desired information. 

Either instead of or in the absence of actual application 

or benchmark programs, synthetic benchmark programs may be 

executed. The benchmark generator creates user-specified 

synthetic benchmarks that drive the system according to 

predefined concurrent programming paradigms or network traffic 

patterns. The machine database contains machine-dependent 

information about network topology, routing, and physical 

implementation, and it is accessed to interpret trace data in 

the correct context. The program database contains 

application-dependent information about the process (or 

object) structure that can be inferred from the program text 

and the event database. It can be accessed along with the 

machine database to analyze the mapping of the program onto 

the machine. 

The statistical analysis tool comprises the statistical 

software on the host system. It may also reside on the nodes 

of the multicomputer, if any distributed analysis is 

supported. The statistical software processes the monitoring 
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data, calculating local and global statistics. Some 

statistics are predefined and others may be user-defined. If 

analysis is closely linked with monitoring, desired statistics 

may be user-selected before runtime so that the monitor can 

filter out unnecessary data. 

The visual analysis tool pictorially displays the 

dynamics of the system. It provides an interactive and 

animated environment for replaying the spatial and temporal 

behavior of the machine. Furthermore, via a hierarchical 

presentation of data, it attempts to display performance data 

at an appropriate level. Color-coded plots, described at the 

end of this chapter, show system activity, and time-series 

profiles can report statistical metrics and individual node 

activity. Finally, the graphics workstation hosts the 

multicomputer and maintains the performance databases and 

software tools. It has a window-based user interface that 

serves as a control panel for using the laboratory. 

The following steps indicate how the method works: 

(1) Configure the multicomputer for instrumented 

execution. 

(2) Set up the statistical analysis tool. 

(3) Generate a synthetic benchmark (if needed). 

(4) Run the application or benchmark program. 

(5) Collect traces and create the event database. 

(6) Set up the program and machine databases. 

(7) Invoke the statistical and visual analysis tools. 

(8) Evaluate the performance via displayed metrics and 

graphics. 

In summary, the methodology offers a combined prescription 

for: 
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(1) effective ways to specify, capture, and retrieve 

information; 

(2) effective ways to process information; and 

(3) effective ways to display information. 

The first item is achieved via instrumentation. The second, 

via a database-like organization and multivariate cluster 

analysis techniques. And the third, via multidimensional 

graphics. We will consider the second and third items in more 

detail. 

Observable Parameters 

Several factors determine the data that can be observed 

and thus the measurements that can be made. Since the monitor 

acts as our eyes into the system and is inevitably a selective 

viewer, it significantly affects the observable data. The 

more closely the monitor, specifically the instrumentation, is 

integrated with the system, the more information that is 

available to it. Close ties with the hardware yield machine-

level details, and close ties with the operating system 

provide system-level and application-level details. Clearly, 

if the system does not permit a certain level of integration 

(or intervention), then certain parameters cannot be measured. 

Observations are made by the sensors. The type of 

sensor, where it is located, and when it is enabled determine 

the information content of an observation. The observable 

parameters that can be obtained directly via a sensor are 

called basic metrics. Alternatively, the observable 

parameters that are only partially defined by sensor 

measurements are called derived metrics. A derived metric 
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requires information from a database or calculations involving 

other quantities to fully specify it. We consider each in 

turn. 

Basic metrics 

A basic, or primitive, metric is an observable parameter 

that can be obtained directly via a sensor. That is, it is 

directly measurable. It is a local variable, describing an 

observation from a low-level or microscopic perspective. A 

minimal set of basic metrics consists of: 

• time of occurrence 

• position (processor number) 

• process (or object) identification 

• event identification 

• values of event-specific variables 

Time and position metrics are used to represent temporal and 

spatial behavior. More importantly, the time stamp and 

processor number uniquely identify the observation in a global 

context. The event identification denotes the state change 

associated with the observation. It is decoded to interpret 

the values of any event-specific variables. Event-specific 

variables pertain to the event categories specified in Chapter 

III. The choice of variables depends on the monitor 

implementation. For the purposes of this work, only several 

variables are required to represent the desired view of 

performance. For message-passing events relating to 

interprocessor communication, we are interested in source and 

destination processor numbers, message length, and channel 

number. Message length (or size) is typically stated as a 

byte count. For message-passing events relating to input-
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output, similar variables are important, except for one 

distinction: either the source or destination is not a 

processor. For process-related events, process size is of 

interest. Process size is the load or amount of work done by 

the process, typically stated as an operation count. The 

granularity of an operation depends on the application 

program. An operation may range from an integer or floating­

point operation to a module of code. Depending on the program 

and the monitor, the load may be an actual, known quantity, an 

approximate quantity, or possibly an expected quantity (if 

probabilities are used for nondeterministic loads). 

For subsequent use in defining derived metrics, we name 

four of the basic metrics as follows; 

• t : time 

• p : processor number 

• m : message length 

• w : work 

Time is expressed in seconds. The processor number is 

typically a nonnegative integer sometimes used as the address 

of the processor. At a fundamental level, both message length 

and work represent amounts of information. Message length is 

stated in bytes, where a byte is a group of eight bits, and 

work is stated in terms of operations, which involve operands 

and results that are also groups of bits. Hence, bits would 

be an appropriate unit of measure. 
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Derived metrics 

A derived metric is an observable parameter that can be 

obtained via a combination of sensor measurements, database 

information, and calculations. It typically is a function of 

one or more basic metrics. If a derived metric uses only 

local information, say basic metrics from one spatial 

locality, then it offers a low-level or microscopic 

perspective on performance. Alternatively, if it includes 

global information, then it gives a high-level or macroscopic 

perspective. Global information involves metrics and other 

information from more than one spatial locality. 

A metric may be a function of the independent variables 

time and position. It can be defined at a particular position 

or point in space, say a processor; it can also pertain to a 

range of positions. Further, a metric can be defined at a 

particular moment in time, possibly the end of program 

execution; it can also pertain to a period of time. Hence, a 

metric may be for a single value or a range of values of an 

independent variable. The types of metrics include timings, 

counts, and ratios. A ratio may be a time rate, a density, a 

percent, or other interesting comparison between values. In 

some cases, it is useful to perform operations on a set of 

values for a metric, including finding the average value, 

maximum value, minimum value, and summation value. For use 

later, general definitions for these operations follow. Let k 

be the metric of interest, P be the highest processor number, 

and T the latest time. Though these definitions cover the 

full range of time and position values, subranges could be 

specified. 
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SUMo ( k ) ; p=p 
s k 
p=0 

SUMt ( k ): t=T 
s k 
t=0 

AVGp ( k ); p=P 
S k / Np, where Np is the number of 
p=0 processor values 

AVGt ( k ): t=T 
S k / N^/ where is the number 
t=0 of time values 

MAXp ( k ): Find 

MAXt ( k ): Find 

MINp ( k ): Find 

MINt ( k ): Find 

Many of the metrics used to evaluate program performance 

on concurrent computers in some way quantify computational and 

communication aspects of program execution. Some of these 

metrics are comparisons between amounts of computation and 

communication. However, there are no generally accepted units 

of measure for amounts of computation and amounts of 

communication. Several units of measure are meaningful. The 

amount of work done by a processor can be derived from either 

some number of granules of computation or computation quanta 

(such as elements in a list or points in a domain) or number 

of operations. The amount of message traffic through a 

processor can be stated as some number of communication 

quanta, such as bytes. Ultimately, for a pure comparison, we 

may want to specify work and traffic in the same units, such 

as bits. Expressing amounts of computation and communication 
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in terms of the time required per quantum also facilitates 

comparison. 

Another point is worth mentioning. Communication over 

the network has two components, local traffic and through 

traffic. Local traffic consists of the messages sent or 

received by a processor; that is, the processor is the source 

or destination node. Through traffic consists of the messages 

traveling through a node, enroute to a destination node. 

Local traffic is directly observable. However, since message 

routing is often handled by a special communications processor 

on the node, through traffic is not visible to the monitor 

unless sensors are located within the communications 

processor. So, a value for through traffic may need to be 

interpolated from available global information, such as the 

routing strategy. Finally, half of the sum of local traffic 

over all nodes is the total system traffic, because local 

traffic is counted twice, at both source and destination. 

Microscopic derived metrics that are of interest include: 

• processor state 

• operation count 

• computation load (granule counr,) 

• computation time 

. computational energy (total work) 

• computational power 

• execution rate (throughput) 

• program energy 

• energy ratio 

• message count 

• communication load (byte count) 

• communication time 
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• communication intensity 

• communication density 

• communication flow 

• I/O traffic 

• channel usage 

• execution time 

• percent computation time 

• percent communication time 

• granularity factor 

• communication overhead 

These metrics are defined at a particular position, the 

processor, typically at a particular moment in time. 

Definitions for each follow. 

Processor state describes the current activity of the 

processor. The following types of activities may be encoded. 

proc state = (mode, status, activity, communication) 

Operation count is the cumulative number of operations 

performed locally by tasks running on a processor. It is a 

function of the basic metric, work, w. 

where 

mode 
status 
activity 

€ {operating system, user} 
e {idle, active} 
e {none, computation, communication} 

communication e {interprocessor send, 
interprocessor receive 
input, output} 

t=T 
op_cnt = s w at t=T, p=P 

t=0 
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The summation implies adding all values of w recorded for 

processor P through time T. 

Computation load, or granule count, is the cumulative 

number of computation quanta or granules operated on by tasks 

running on a processor. The size of a quantum depends on the 

application, and possible values range from a bit to a byte to 

a 64-bit word, or even larger. It is a function of the basic 

metric, work, w. The constant Q is the number of quanta per 

operation. 

t=T 
comp_ld = Q • S w at t=T, p=P 

t=0 

= Q • opcnt 

Computation time is the cumulative time spent doing work, 

or local processing activities that contribute to the solution 

of the problem. 

t=T 
comp_tm = s At^ at t=T, p=P 

t=o 

Here, At^ refers to a time period during which work is done. 

Computational energy, or total work, is the cumulative 

amount of information processed by tasks running on a 

processor. Information is measured in bits. It is a function 

of the basic metric, work, w. The constant B is the number of 

bits per operation. Alternatively, the constant Bq is the 

number of bits per quantum. 
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t=T 
comp_energy = B • s w at t=T, p=P 

t=0 
= B • opcnt 
= BQ • comp_ld 

Computational power is the average temporal rate at which 

work is done or energy is expended, exclusive of any overhead. 

t=T 
comp_power = comp_energy / S At^ at t=T, p=P 

t=0 

Here, At^ refers to a time period during which work is done. 

Execution rate, or throughput, is the temporal rate at 

which work is done, or energy is expended, over the duration 

of program execution. This metric includes overhead effects. 

execrate = comp_energy / T at t=T, p=P 

Program energy is the total amount of information 

expected to be processed by tasks running on a processor. It 

is an estimate derived from knowledge about the program. 

Information is measured in bits. 

prog energy = ;f (program) at p=P 

An amount can be determined automatically via proper analysis 

of the program database. The user can also input a value. 

Energy ratio is the ratio of computational energy to 

program energy. It estimates the degree of completeness of 

information processing on a scale from zero to one. 

comp_energy 
energy r = at t=T, p=P 

prog_energy 
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Message count is the cumulative number of messages sent 

or received by the processor, including interprocessor 

communication and input-output. 

t=T 
msg_cnt = s i^^ at t=T, p=P 

t=0 

Here, i^^ is a binary variable. ig^=l if an event recorded for 

processor P through time T is message-related; otherwise ig^=0. 

Communication load, or byte count, is the cumulative 

number of communication quanta involved in message passing, 

including interprocessor communication and input-output. 

Here, we assume the size of a quantum is a byte. This metric 

is a function of the basic metric, message length, m. We 

include only local traffic in this definition, that is, 

messages sent and received by the processor. Note that 

through traffic could be included if sensors were available to 

record it in local storage. 

t=T 
comm_ld = s m at t=T, p=P 

t=0 

Recall, the summation implies adding all values of m recorded 

for processor P through time T. 

Communication time is the cumulative time spent by the 

processor in message passing, including interprocessor 

communication and input-output. 

t=T 
comm tm = s At- at t=T, p=P 

t=0 
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Here, refers to a time period during which the (main) 

processor is busy with communication activities. 

Communication intensity is the cumulative amount of 

information involved in message passing (for local traffic 

only). Information is measured in bits. It is a function of 

the basic metric, message length, m. The constant Bq is the 

number of bits per quantum; a quantum is a byte, so Bq=8. 

t=T 
comm_int = Bq • s m at t=T, p=P 

t=0 
= BQ • comm_ld 

Communication density is the amount of information 

involved in message passing that exists at the time of 

interest (for local traffic only). Information is measured in 

bits. This indicates the number of bits involved in 

communication at a particular time within the "space" of the 

processor node . 

t=T 
comm_den = Bq • s mm at t=T, p=P 

t=0 

Here, mg, refers to the lengths of messages that are currently 

being sent or received, including any buffered messages, at 

time T. The constant Bq is the number of bits per quantum; a 

quantum is a byte, so BQ=8. 

Communication flow is the time rate at which information 

involved in message passing is processed and transmitted (for 

local traffic only). It indicates the rate at which bits 

"flow" into and out of the "space" of the processor node. 
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t=T 
coinin_flow = coimn_int / S Atj^ at t=T, p=P 

t=0 

Here, Atg^ refers to a time period during which the processor 

node is busy with communication activities. The endpoints of 

a time period depend on the data that can be logged by the 

monitor. Optimally, a message send time interval would range 

from initiation of message transmission by the program to 

completion of hardware transmission (at the source node). A 

message receive time interval would range from physical 

reception of the message to completion of message transmission 

and processing by the program (at the destination node). 

I/O traffic is the portion of the communication load due 

to input-output activities (for local traffic only). 

t=T 
io_traffic = s mjQ at t=T, p=P 

Here, mjQ refers to the lengths of messages (in bytes) that 

are recorded as having a type of either input or output. 

Channel usage is the number of communication channels 

currently being used for message passing at the time of 

interest (for local traffic only). 

t=T 
chan_use = s ich,T at t=T, p=P 

Here, ich,T ^ binary variable. ich,T~^ if a message-

related event recorded for processor P through time T 

generates traffic on channel ch during time T; otherwise 

ich,T~®* ^ relative value may be stated as the ratio of 

channel usage to the number of channels per processor. 

Execution time is the total amount of time the processor 
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node has been involved with program execution. It begins at 

time t=0, when the processor node is initialized. It should 

be.equal to the sum of computation time and communication time 

(within reasonable measurement error). 

exectm = T or T^one t=T, p=P 

T is the time of interest. Tdone the maximum time recorded 

for the processor. If T is greater than T^one' then TjjQ^e is 

used. 

Percent computation time is the percent of the total time 

that is spent doing work. This is sometimes referred to as 

computational efficiency. 

comp_tm 
%comp_tm = X 100% 

exec_tm 

Percent communication time is the percent of the total 

time that is spent doing message passing. 

comm_tm 
%comm_tm = x 100% 

exec_tm 

Communication overhead is a measure of the time spent 

communicating per unit of time spent doing work. It is the 

ratio of communication time to computation time. 

comm_tm 
comm_ovrhd = at t=T, p=P 

comp_tm 
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Granularity factor is a measure of the amount of 

information involved in processing activities relative to the 

amount of information involved in communication activities. 

It is the ratio of computational energy to communication 

intensity. It roughly indicates the number of bits of 

computation per bit of communication. 

comp_energy 
gran fact = at t=T, p=P 

comm_int 

If through traffic is not locally discernible via sensors 

at a processor node, it can be (roughly) reflected in the 

communication metrics by using global information. What is 

needed is a function that interpolates position and time along 

the route of the message. Hence, it depends on the message 

routing strategy of the operating system. In the simplest 

case, a specific route and a uniform rate along the route are 

assumed. Obviously, more complex cases are likely to occur, 

requiring more sophisticated interpolation functions. The 

function should generate event records similar to any message-

related event record except with a type specified as through 

traffic. These event records would then be used to compile 

the desired statistics. We refer to this function by: 

Interpolate^ (e^^, routing algorithm). 

It takes as input a stream of message-related event records, 

e^g, and a routing algorithm. It matches send events with 

corresponding receive events and notes source and destination 

processor numbers and time stamps. Then, based on the routing 

algorithm, it determines (the most probable) intermediate 

nodes, if any, enroute from source to destination. Dividing 

the transmission time interval equally, it associates a time 
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with each visit to a processor node. This information is 

stored in event records along with the type and other message 

information. The output of the function is a stream of 

through traffic event records, e^hru* For clarity, we mark 

any metrics that use this function with a subscript "thru." 

The communication metrics include message count, 

communication load, communication time, communication 

intensity, communication density, communication flow, channel 

usage, and I/O traffic. The previous definitions for 

microscopic metrics were for local traffic only. A value that 

reflects through traffic at processor P may be obtained by 

invoking Interpolate_jf and performing some additional 

processing on the resulting through traffic event records. 

The following definitions specify the additional processing. 

Let t=T and p=P be the time and processor of interest, 

respectively. The subscript "tot" denotes a total value for 

the metric. 

msg_cntthru ~ count of the number of event records in 
the result of Interpolate;f 

msg_cnttot = msg_cnt + msg_cntthru 

t=T 
comm_ldtjjj^ = s m^^ru 

t=0 

comm_ldj.Q^ = comm_ld + comm_ldthru 

Here, m^-jj^u refers to the lengths of messages that are 

recorded as being of type through traffic, which includes all 

event records generated by Interpolate_J-. 
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t=T 
coinm_int^jjj^ = BQ • S ^thru 

t=0 
= BQ . coinm_ldthru 

coinm_inttot ~ coinm_int + coinm_int^jjj^ 

The constant BQ is the number of bits per quantum; a quantum 

is a byte, so BQ=8. 

t=T 
COMM_DENTHJ^ = BQ "^^^^THRU,T 

comm_den^Q^ = comm_den + comm_den^jjj^ 

Here, m^hru,T refers to the lengths of messages that are of 

type through traffic and are currently being transmitted. 

comm_flowthru = comm_intthru / ̂  At^^ru 

comm_flowtot = comm_inttot / Z (Atj^ + At^hru) 

Here, refers to a time interval during which through 

traffic visits a processor node, which can be determined from 

the event record list generated by InterpolateAt^ refers 

to a time period during which the processor node is busy with 

communication activities. The summation involves all time 

intervals for processor P (excluding any duplicate time 

periods, so that each time is counted only once). 

t=T 
io_trafficthru ~ ^ ̂ 10,thru 

t=0 

io_traffictot = io_traffic + io_traffictj^j^ 
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Here, mio^thru refers to the lengths of messages that are 

recorded as having a message type of either input or output 

and a type of through traffic. That is, event records for 

input-output communication activities are processed by 

Interpolate_/, and the resulting event records reflect I/O-

related through traffic. 

chan_use^jj^ = count of the number of channels being used 
at time T in the result of Interpolate^ 

chanuse^Q^ = chan_use + chan_usethru 

Many of the macroscopic derived metrics are global 

measures based on corresponding microscopic metrics. These 

metrics involve some type of aggregate operation over all 

local values. Common aggregate operations include summation, 

averaging, and extrema-finding. A variable name used to 

denote a global measure will be prefixed with a "G_". A 

definition based solely on an aggregate operation has a 

standard form. Given the aggregrate operation "op" and the 

microscopic metric "k", the global metric is defined as 

follows: G_KQP = op( k ). 

Macroscopic derived metrics that are of interest include: 

• processor spatial coordinates 

• state (or activity) occurrences 

. operation count 

• computation load 

• computation time 

• computational energy 

• computational power 

• program energy 

• energy ratio 
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• message count 

• communication load 

• communication time 

• communication intensity 

• communication density 

• communication flow 

• I/O traffic 

• execution time 

• percent computation time 

• percent communication time 

• granularity factor 

• communication overhead 

• utilization 

• channel utilization 

• concurrency 

• communication concurrency 

• balance 

• communication balance 

• efficiency 

• synergy 

These metrics are defined over the space of the whole system, 

either at a particular moment in time or over the lifetime of 

the system. Definitions for the metrics follow. 

Processor spatial coordinates give the position of the 

processor in a physical layout, such as a one-, two-, or 

three-dimensional grid. It is a function of the basic metric, 

processor number, p. The coordinates depend on the mapping 

function used to map or embed nodes of the network topology 

onto the physical topology. The result of this function (and 

the value of this metric) is a tuple with one, two, or three 
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components corresponding, respectively, to a one-, two-, or 

three-dimensional physical topology. 

proc_coord = MappingJ (p, N, topology) 

Here, N is the total number of processors in the system, and 

topology refers to the network and physical topologies. 

State occurrences, or activity occurrences, are absolute 

or relative indicators of the number of processors in each of 

the defined (and recorded) processor states. Possible states 

or activities include computing, sending, waiting, receiving, 

inputting, and outputting. An absolute value is a count of 

the number of processors in the specified state at a 

particular moment in time. A relative value is a ratio of the 

absolute value to the total number of processors in the 

system. 

Operation count is based on the microscopic metric, 

opcnt. Aggregate operations include SUMp, AVGp, MAXp, and 

MINp. 

G_op_cntsuMp = SUMp ( op_cnt ) 

G_op_cnt;^VGp = AVGp ( op_cnt ) 

G_op_cntnj^p = MAXp ( op_cnt ) 

G_op_cntjjjjjp = MINp ( op_cnt ) 

Computation load is based on the microscopic metric, 

comp_ld. Aggregate operations include SUl^, AVGp, MAXp, and 

MINp. 
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G_comp_ldsxjMp = SUMp ( comp_ld ) 

G_comp_ld;^Vgp = AVGp ( comp_ld ) 

G_comp_ldji;^p = MAXp ( coinp_ld ) 

G_comp_ldj{jj|p = MINp ( comp_ld ) 

Computation time is based on the microscopic metric, 

comp_tm. Aggregate operations include SUMp, AVGp, MAXp, and 

MINp. 

G_comp_tmgujjp = SUMp ( comp_tm ) 

G_comp_tm^yQp = AVGp ( comp_tm ) 

G_comp_tmjj^p = MAXp ( comp_tm ) 

G_comp_tmjjjjjp = MINp ( comp_tm ) 

Computational energy is based on the microscopic metric, 

comp_energy. Aggregate operations include SUMp, AVGp, MAXp, 

and MINp. 

G_comp_energysuiip = SUMp ( comp energy ) 

G_comp_energy^yQp = AVGp ( compenergy ) 

G_comp_energyjj^p = MAXp ( comp_energy ) 

G_comp_energyjjjjjp = MINp ( comp_energy ) 

Computational power is based on the microscopic metric, 

comp_power. Aggregate operations include AVGp, MAXp, and 

MINp. 

G_comp_power^YQp = AVGp ( comp_power ) 

G_compjpowerji^p = MAXp ( comp_power ) 

G_comp_j)owerjijjjp = MINp ( comp_power ) 

A useful definition that gives the overall rate of doing work 

(exclusive of overhead) is: 



www.manaraa.com

83 

G_coinp_power = G_comp_energygy^p / s At^ 

At^ refers to a time period during which work is done. The 

summation involves all time intervals over all processors, 

excluding any duplicate time periods (so that each global time 

is counted only once). 

Execution rate is based on the microscopic metric, 

execrate. Aggregate operations include AVGp, MAXp, and MINp. 

G_exec_rate^YQp = AVGp ( execrate ) 

G_exec_ratej{^p = MAXp ( exec rate ) 

G_exec_ratejijj|p = MINp ( exec rate ) 

A useful defintion that gives the overall rate of doing work 

over the duration of program execution (including overhead) 

is: 

Gexecrate = G_comp_energygy ^p / MAXp( exec_tm ) 

= G_comp_energysuMp / G_exec_tmMAXp 

Program energy is based on the microscopic metric, 

progenergy. Aggregate operations include SUMp, AVGp, MAXp, 

and MINp. 

G_prog_energysu}ip = SUMp ( prog_energy ) 

G_jprog_energy^ygp = AVGp ( prog_energy ) 

G_j)rog_energyjj^p = MAXp ( prog_energy ) 

G_prog_energyjiiNp = MINp ( prog_energy ) 

Energy ratio is based on the microscopic metric, 

energy_r. Aggregate operations include AVGp, MAXp, and MINp. 
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G_energy_rj^ygp = AVGp ( energy_r ) 

G_energy_rMAXp = ^AXp ( energy_r ) 

G_energy_rMiNp = MINp ( energy_r ) 

A useful definition that gives the overall ratio is: 

SUMp( comp_energy ) G_comp_energygy^p 
Genergyr = = — 

SUMp( prog_energy ) G_prog_energysuMp 

Message count is based on the microscopic metric, 

msg_cnt. Aggregate operations include AVGp, MAXp, and MINp. 

G_msg_cntj^yGp = AVGp ( msg_cnt ) 

G_msg_cntji;^p = MAXp ( msg_cnt ) 

G_msg_cntjjjjjp = MINp ( msg_cnt ) 

Similar definitions hold using msg_cntf>)-p, and msg_cnt^Q^. A 

definition for the cumulative number of messages in the system 

is: 

G msg cnt = SUMp( msg_cnt ) / 2 

Communication load is based on the microscopic metric, 

comm_ld. Aggregate operations include AVGp, MAXp, and MINp. 

G_comm_ldj^ygp = AVGp ( comm_ld ) 

G_comm_ldji^p = MAXp { comm_ld ) 

G_comm_ldjjjjjp = MINp ( comm_ld ) 

Similar definitions hold using comm_ld^^^ and comm_ldtof & 

definition for the cumulative number of communication quanta, 

or message bytes, in the system is: 

G_comm_ld = SUMp( comm_ld ) / 2 
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Communication time is based on the microscopic metric, 

comm_tm. Aggregate operations include SUMp, AVGp, MAXp, and 

MINp. 

G_coinm_tmgujjp = SUMp ( comm_tm ) 

G_comm_tm^yQp = AVGp ( comm_tm ) 

G_comm_tm2{^p = MAXp ( comm_tm ) 

G_comm_tmjijjjp = MINp ( comm_tm ) 

Communication intensity is based on the microscopic 

metric, comm_int. Aggregate operations include AVGp, MAXp, 

and MINp. 

G_comm_int^VQp = AVGp ( comm_int ) 

G_comm_intjj^p = MAXp ( comm_int ) 

G_comm_intjiiNp = MINp ( comm_int ) 

Similar definitions hold using comm_intthru comm_inttot' 

A definition for the cumulative amount of information involved 

in message passing in the system is: 

G comm int = SU1^( comm_int ) / 2 

Communication density is based on the microscopic metric, 

comm_den. Aggregate operations include SUMp, AVGp, MAXp, and 

MINp. 

G_comm_dengujjp = SUl^ ( comm_den ) 

G_comm_den;^yQp = AVGp ( comm_den ) 

G_comm_denjj;^p = MAXp ( comm_den ) 

G_comm_denjjjjjp = MINp ( comm_den ) 
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Similar definitions hold using coimn_den^^2ru comm_den^Qt. 

Communication flow is based on the microscopic metric, 

comm_flow. Aggregate operations include AVGp, MAXp, and MINp. 

G_comm_flow^yQp = AVGp ( comm_flow ) 

G_comm_floWjj2^p = MAXp ( comm_flow ) 

G_comm_flowjijjjp = MINp ( comm_flow ) 

Similar definitions hold using comm_f1ow^h^^ and comm_flowtof 

A useful definition that gives the overall rate of processing 

and transmitting message information is: 

G_comm_flow = G_comm_int / s Atj^ 

Atj^ refers to a time period during which the processor node is 

busy with communication activities. The summation involves 

all time intervals over all processors, excluding any 

duplicate time periods (so that each global time is counted 

only once). 

I/O traffic is based on the microscopic metric, 

io_traffic. Aggregate operations include SUMp, AVGp, MAXp, 

and MINp. 

G_io_trafficsujjp = SUMp ( io_traffic ) 

G_io_traffic^VQp = AVGp ( io_traffic ) 

G_io_trafficjj;^p = MAXp ( io traffic ) 

G_io_trafficj^jjjp = MINp ( io_traffic ) 

Similar definitions hold using io_trafficthru 

io_traf f ictot• 

Execution time is based on the microscopic metric, 

exec_tm. Aggregate operations include SUM^, AVGp, MAXp, and 

MINp. 
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G_exec_tmsujjp = SDMp ( exec_tm ) 

G_exec_tm^yQp = AVGp ( exec_tm ) 

G exec tm^^p = MAXp ( exec_tm ) 

G_exec_tmj^jjjp = MINp ( exec_tm ) 

Percent computation time is based on the microscopic 

metric %comp_tm. Aggregate operations include AVGp, MAXp, and 

MINp. 

G_%comp_tm^yGp = AVGp ( %comp_tm ) 

G_%comp_tmji^p = MAXp ( %comp_tm ) 

G_%comp_tmjjji|p = MINp ( %comp_tm ) 

Percent communication time is based on the microscopic 

metric %coinm_tm. Aggregate operations include AVGp, MAXp, and 

MINp. 

G_%comm_tm^Yep = AVGp ( %comm_tm ) 

G_%coinm_tmji2^p = MAXp ( %comm_tm ) 

G_%comm_tmjjjup = MINp ( %comm_tm ) 

Granularity factor is based on the microscopic metric 

granfact. Aggregate operations include AVGp, MAXp, and MINp. 

G_gran_fact^yQp = AVGp ( gran fact ) 

G_gran_factji^p = MAXp ( gran_fact ) 

G_gran_factjjjjjp = MINp ( gran_fact ) 

A useful definition that gives the overall ratio is: 

SUMp( comp_energy ) G_comp_energygu^p 
Ggranfact = = =— 

SUMp( comm_int ) G_comm_intgujip 
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Communication overhead is based on the microscopic metric 

comm_ovrhd. Aggregate operations include AVGp, MAXp, and 

MiNp. 

G_comm_ovrhd;^yQp = AVGp ( comm_ovrhd ) 

G_comm_ovrhdjj^p = MAXp ( comm ovrhd ) 

G_comm_ovrhdjjji|p = MINp ( comm_ovrhd ) 

A useful definition that gives the overall ratio is: 

SUMp( comm_tm ) G_comm_tmgujjp 
G_comm_ovrhd = = — 

SUMp( comp_tm ) G_comp_tmg^^jp 

Concurrency is the number of active processors involved 

in program execution. 

concurrency = count of the number of active processors 
< N 

where N is the number of processors in the system (or the part 

of the system allocated to this problem). 

Communication concurrency is the number of active 

channels involved in message passing activities. 

comm_concur = count of the number of active channels 
< N X d 

where N is the number of processors in the system (or the part 

of the system allocated to this problem), and d is the 

dimension of the system (i.e., the number of channels per 

processor). 

Utilization is the percent of the total number of 

processors that are actively involved in program execution. 
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concurrency 
utilization = x 100% 

N 

where N is the number of processors in the system (or the part 

of the system allocated to this problem). 

Channel utilization is the percent of the total number of 

channels that are actively involved in message passing 

activities. 

comm_concur 
chan_util = x 100% 

N X d 
where N is the number of processors in the system (or the part 

of the system allocated to this problem), and d is the 

dimension of the system (i.e., the number of channels per 

processor). 

Balance is a measure that roughly indicates the amount of 

load imbalance in the system. It is the ratio of average 

computation time to the maximum of all processor computation 

times. Generally, as the ratio approaches one, the 

distribution of work becomes more uniform across the system. 

A spatial measure based on computational energy (in bits) may 

also be stated. 

AVGp ( comp_tm ) G_comp_tmj^VQp 
balance = = — < l 

MAXp ( comp_tm ) G_comp_tmji^p 

Communication balance is a measure that roughly indicates 

the extent to which traffic is evenly distributed in the 

system. It is the ratio of average communication time to the 

maximum of all processor commmunication times. Generally, as 

the ratio approaches one, the distribution of traffic becomes 

more uniform across the system. A spatial measure based on 
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communication intensity (in bits) may also be stated. 

AVGp ( comm_tm ) G_comm_tmj^yQp 
comm_bal = ; = < 1 

MAXp ( comm_tm ) G_comia_tmjj^p 

Efficiency is a measure that indicates the quality of a 

parallel solution compared to a sequential solution. Two 

definitions are useful. Both are ratios of computation done 

on a sequential system to computation done on a parallel 

system. The first, eff^, states computation in units of time; 

and the second, eff^p, in units of operations. As the ratio 

approaches one, the parallel system is spending more of its 

time doing useful work. 

eff+. = 
TS Tg Tg 

N'Tp N«MAXp( exec_tm ) N*G_exec_tmjj^jjp 

Ts Tg 

SUMp( exec_tm ) G_exec_tmgu^p 

< 1 

where N is the number of processors in the system (or the part 

of the system allocated to this problem), Tg is the time that 

is (or would be) required to solve the problem on a sequential 

system, and Tp is the time required to solve the problem on a 

parallel system. 

Synergy is a measure that indicates the quality of the 

mapping of the parallel program onto the parallel computer. 

We want a measure that parameterizes the properties of a good 

mapping: balanced load, high concurrency, and relatively low 

communication overhead. There is potential conflict among 

these parameters. The mapping problem is essentially an 

optimization problem. Several solutions to the problem have 
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been proposed (see the Fox and the Bokhari references), and 

the typical approach minimizes or maximizes some function. 

For our purposes, we choose a framework outlined in [Fox et 

al., 1988]. 

A problem is formulated in terms of a set of processes or 

objects, which are viewed as the vertices of a graph. Objects 

that communicate are connected by an edge of the graph. Each 

object a does work, w^^, and objects a and p need to 

communicate an amount of information c^^. The parallel 

computer can be described in the same form: a set of 

processors and an interconnection network. A subset of 

objects is allocated to each processor; let object a be at 

processor p and object p be at processor q. The total amount 

of work Wp for processor p and the total amount of 

communication Cpg along the path from p to g can be written 

Wp - S w„ 

Cpq " 
a , P  

An objective function can be defined in terms of these 

variables. Though its exact form may vary depending on the 

application program or computer, it typically involves 

summation of work and communication values for all processors 

and paths in the system. 

Objective^ = f ( Cpg, Wp ) 

We want to minimize the function over the whole system. 

Minimizing the objective function corresponds to maximizing 

the synergy, so we can use the reciprocal: 
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synergy = 1 / Objective_jf 

The notion of hot spots of activity in the system is 

supported by the defined metrics. Informally, a hot spot is a 

locale with high contention for its resources. At a hot spot, 

there exists a large amount of information being processed and 

a large amount of time being spent processing that 

information. Both computation hot spots and communication hot 

spots are possible. Using the above metrics, a hot spot 

occurs when the amount of computation (or communication) at a 

processor is greater than some percentage of the total amount 

in the system or greater than some constant amount. Hot spots 

become visually apparent via the graphics described in the 

next section. 

One of the powerful aspects of this approach, as we have 

described it so far, is the expressiveness, flexibility, and 

simplicity of applying general multivariate statistical data 

analysis techniques to the performance data. Conventional 

cluster analysis techniques have been used to effectively 

reduce and order the data. The analysis presented in this 

section is just the beginning of the possibilities for 

exploring the data. For example, although the time-dependent 

and position-dependent parameters are clearly relevant to 

understanding system performance, dependencies with variables 

other than time and position may reveal important 

relationships as well. As we shall see in the following 

sections, the greatest power comes from applying graphical 

data analysis software for visualizing the performance data. 
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Graphics 

Without graphics, vast amounts of diverse information 

cannot be easily assimilated. Visualization of data 

describing program performance is becoming especially 

important. Observations are more comprehensive and 

immediately clearer than any that can be drawn from the data 

in textual form. As discussed in Chapter IV, useful formats 

for representing data depend on the data and thus on the 

system that generates the data. 

Of the possibilities for displaying data describing 

program performance on concurrent computers, we will focus on 

two formats. One format, timing profiles, is already in 

common use; and the second format, data plots, is introduced 

in this thesis. Both formats offer views of the basic and 

derived metrics defined in preceding sections. Timing 

profiles illustrate measures over time; and data plots, over 

space (and time if animation is used). Timing profiles are 

inherently sequential and (typically) one-dimensional in their 

presentation of information. Conversely, data plots are 

naturally parallel and multidimensional. Data plots encompass 

several different types of plots, from which we create machine 

plots developed through the course of this work. Although 

certain of the basic data in the event trace may be graphed 

directly, some preprocessing is typically required by the 

graphical software tools. The preprocessing may involve 

formatting the data and converting data into derived metrics. 
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Plots 

A general class of multivariate data plots can be 

effectively tailored to display performance measurement data. 

The two types of data plots most relevant to this work are 

scatter plots and block plots. Scatter plots, or dot plots, 

are two- or three-dimensional pictures of data. Each dot 

represents an observation (or event) and denotes values for 

the variables associated with the coordinate axes. Further, 

the dots may be color-coded to denote the value of another 

variable. Up to four variables may be displayed. Within a 

dot plot, only dots representing observations of interest are 

visible. Subsets of dots may be selectively highlighted or 

hidden. 

Block plots, or cell plots, are two-dimensional pictures 

of data. By definition, a block plot corresponds to an image. 

An observation is represented by a block of pixels, yielding a 

two-dimensional array of blocks or cells (i.e., an image) for 

a set of observations. A block denotes a value (or range of 

values) for the row and column variables, and it is shaded or 

color-coded to denote the value (or relative value) of a 

variable of interest. Three variables may be displayed. 

Within a block plot, all cells in the array are visible. 

In the color-coded plots, data are often displayed with 

the highest values in red and the lowest in blue, with the 

display colors following the wavelengths of colors found in 

the visible-light spectrum. Color is an important feature, 

because it helps to visually identify trends and patterns in 

data sets. 

Plots are especially useful for showing system activity. 

Though a data plot is completely general in the sense that any 
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subset of performance variables may be displayed, we define a 

special kind of plot. A machine plot is a special kind of 

plot (either a dot or cell plot) that displays spatial and 

temporal information extracted from performance measurement 

data. Spatial (space- or position-dependent) data are shown 

by labeling the coordinate axes with position variables. 

Temporal (time-dependent) data are reflected via animation by 

incrementally updating the display using a time variable. 

Hence, for displaying computer system performance, dots and 

cells represent processors. Processor numbers (or addresses) 

are mapped to grid coordinates. Adjacency in the plots (i.e., 

adjacent dots or cells) can correspond to physical proximity 

of processors within the actual machine. A dot or cell is 

color-coded to indicate the value of a parameter for the 

processor. The displayed parameter may be any of the 

microscopic metrics defined earlier in the chapter. Thus, a 

machine plot illustrates the spatial distribution of values of 

a parameter over all processors. An example of each type of 

plot, in template form, is shown in Figure 5.1. 

This machine perspective distinguishes this approach to 

presenting performance measurement data. It achieves four 

essential objectives. First, in this format, a system with 

hundreds to thousands of processors can be displayed at once. 

A single plot is a snapshot of performance that captures the 

whole system at some point in time. A sequence of plots 

displays the progression of the system over time. On a high-

resolution color display, a visually striking picture is 

produced. Patterns and anomalies in system performance can be 

visually detected. Hot spots of activity, typically 

identified as regions colored in red, are immediately 
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Figure 5.1. Two geometric graphs, in template form, for 
. . presenting performance data from a machine 

perspective; a dot plot and a cell plot 
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discernible. 

Secondly, a two- or three-dimensional plot is appropriate 

to accurately account for the behavior of the computer system 

in both time and space. One reason that it is appropriate is 

that a network of any (logical) dimension must be implemented 

physically in two or three dimensions. A second reason, which 

we mention again in the last chapter, is that large, fine-

grain multicomputers may require an architecture based on a 

two- or three-dimensional mesh [Athas and Seitz, 1988]. That 

is, a mesh will be used for both the logical network and 

physical network topologies. This development is partly due 

to VLSI wiring density constraints [Dally, 1987] and to 

communication latency contraints of higher speed clocks. 

Thirdly, a machine perspective facilitates showing the 

flow or movement of granules of computation and communication 

throughout the system. Thus, we emphasize both computation 

and communication activities, and account not only for the 

time spent in these activities but also for the space used by 

these activities. Finally, a fourth point is that the format 

provides a "surface" upon which we can superimpose (or 

overlay) program and network graphs in order to analyze the 

mapping between levels. 

Plots depict spatial characteristics of performance for 

the system as a whole. The macroscopic metrics, or summary 

statistics, defined earlier in the chapter associate single 

numerical measures with these performance pictures. Profiles, 

discussed next, emphasize temporal behavior (typically at the 

expense of spatial behavior). 
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Profiles 

A time-sèries profile or timing profile (sometimes called 

a strip chart) depicts the value of a parameter as a function 

of time. It is a simple line graph with time on the x-axis 

and the parameter on the y-axis. We define two types of 

timing profiles; micro-charts and macro-charts, for 

displaying microscopic metrics and macroscopic metrics, 

respectively. Micro-charts are useful for closer inspections 

of individual processor nodes. Macro-charts show trends of 

summary statistics over time. Both types of timing profiles 

can be coupled with machine plots (above) to effectively 

display temporal as well as spatial behavior. 

Any of the metrics described in the preceding sections 

can be graphed via a timing profile. A macro-chart is useful 

as a pop-up window in conjunction with a plot. A plot 

illustrates the value of a parameter at each processor at a 

particular time, and the profile tracks values for a 

corresponding global parameter over time. When animation is 

invoked for the plot, the profile provides a global context 

for the series of plots. 

A micro-chart is useful when it is accessible via a 

hierarchical selection, or zoom-in, mechanism. If more 

detailed information is desired about a particular region or 

processor in a displayed plot, that region or processor can be 

highlighted. A profile window can then be opened for an 

individual processor. Additional details about the 

highlighted region can also be selected via a pull-down menu, 

including information about the channels, the node, the 

network, and the program. 
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CHAPTER VI. 

PROTOTYPE IHPLEHENTATION 

The Dodo said to Alice; "... the best way to explain it is to 
do it." First it marked out a race course, in a sort of 
circle, and then all the party were placed along the course, 
here and there. There was no "One, two, three, and away!", 
but they began running when they liked, and left off when they 
liked, so that it was not easy to know when the race was over. 

Lewis Carroll, from Alice's Adventures in Wonderland 

A simulation-based prototype implementation demonstrates 

the feasibility of the prescribed approach for representing 

performance measurement data. It is not specifically targeted 

to any particular architecture or machine. Rather than using 

actual instrumentation, a simulator was developed that 

generates the event traces for programs executing on a 

(possibly large) hypercube multicomputer. The event traces 

are processed and then graphically displayed in several 

formats. This chapter describes the simulation environment, 

the graphics software, and the synthetic application programs. 

Pictures of performance, merely frames of an animated story 

detailing program performance, are shown. 

Simulation 

The simulation environment is a simplified version of the 

fully equipped laboratory outlined in Chapter V. In most 

respects, it provides the essential features of the 
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laboratory. The simulator itself merely supports the primary 

objective which is to investigate data presentation. The 

choice of this objective is partly due to the need to focus on 

just one aspect of this expanding area of study and to the 

increasing importance of data visualization. Also, it is an 

obvious one because of our presently limited parallel 

computing resources. Hence, the simulator encompasses the 

hypercube, the monitor, and the application program components 

of the proposed laboratory. It is a minimal implementation 

that yields representative event traces describing program 

execution; note that we are not concerned at this time about 

verifying the correctness of the simulator and event traces 

with respect to an actual implementation. Our purpose is to 

generate event traces with data similar to the data that would 

be found in actual event traces from program execution on an 

instrumented hypercube multicomputer. To this end, we have 

been successful, based on comparisons with event traces from 

the Seecube software package [Couch, 1988]. 

The simulator consists of several modules of code. At 

the top-level, the user provides information about the 

multicomputer and the program. A hypercube architecture is 

assumed in the prototype, so all that is required as input is 

the dimension of the cube. The user is given a menu of 

synthetic application programs that are available in the 

program library. The program library includes collective 

communication routines and complete application programs. 

These synthetic programs drive the simulation according to 

some computation or communication paradigm. The collective 

communication routines include: 
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1-D Shift (or Rotate) 
2-D Shift (or Exchange) 
Broadcast 
Collect 
Combine (or Global Exchange) 

Because of the importance of efficient communication for 

multicomputers, these routines are becoming fairly standard 

communication algorithms. They are documented in [Fox et al., 

1988], [Gustafson et al., 1988], and [Geist et al., 1989], 

among other sources. The applications currently in the 

program library include; 

Quicksort (Divide and Conquer) 
1-D Wave Equation (Domain Decomposition) 
2-D Laplace's Equation (Domain Decompostion) 
1-D Potential Energy Problem (Domain Decomposition) 

The concurrent computation paradigm is noted in parentheses. 

The load per processor changes logarithmically (with respect 

to time) in the Quicksort application program, and it remains 

constant (over time) in the other applications. In other 

words, these programs have a regular structure in terms of 

computation and communication. Programs with an irregular 

(less predictable) structure that may require dynamic load 

balancing and dynamic message routing strategies are beyond 

the scope of this prototype implementation. These programs 

are based on fairly standard algorithms and serve the purpose 

of illustrating changing amounts of computation and 

communication over time and space during program execution. 

They are documented in [Fox et al., 1988] and [Gustafson et 

al., 1988], among other sources. 

Since the simulation is event-driven, the synthetic 

programs access more basic event-specific routines. The 

event-specific routines update the activities of the 
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processors in the system as dictated by the program being 

executed. The updates occur in sweeps across the system, with 

each sweep advancing the local clocks on each processor. The 

local clocks, though maintained individually, are synchronized 

when communication-related events occur. 

Figure 6.1 depicts the event-driven simulation and the 

recording of events. Computation-related events change and 

record the amount of work being done by each processor, and 

communication-related events change and record the amount of 

traffic local to each processor. The event-specific routines 

also function as the monitor and include calls to logging 

routines that store monitoring data when events occur. The 

following activities (along with any supporting information) 

are recorded in the present version; (1) idle (or no 

activity), (2) compute, (3) interprocessor send, (4) 

interprocessor receive, (5) wait to receive, (6) input, and 

(7) output. 

The event records are logged to a single trace file. In 

the interests of time and storage constraints in the context 

of the simulation environment of the prototype, the format of 

an event record is as basic as possible. It consists of the 

following fields: (1) time of event, (2) processor address, 

(3) new state (or activity) resulting from the event, (4) work 

(in operations), and (5) traffic (in bytes). Even with the 

relatively simple programs being monitored in this prototype, 

trace records are generated frequently and the trace file 

grows quickly. The 1-D Wave Equation program from the library 

creates a 200,000-byte file when run in its most limited form. 

Trace files that we have inspected from the Seecube software 

package are in excess of one million bytes [Couch, 1988]. 
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Figure 6.1. Event-driven simulation and generation of event 
records 
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Since time and storage are required during each phase of 

processing the trace file, including creation, analysis, and 

display, limiting the overhead becomes important. 

Although it is important in any implementation, excessive 

overhead is especially noticeable in a prototype built with 

modest components. An actual implementation would require a 

high-performance workstation (for example, featuring a 32-bit 

processor, 25 megahertz clock, and 70 megabyte hard disk) with 

possible hardware support for graphics. The present setup for 

the prototype implementation consists of an IBM PC/AT personal 

computer (16-bit processor, 12 megahertz clock, and 20 

megabyte hard disk), an Apple Macintosh-II personal computer 

(color graphics), and serial communications via a host 

computer (to upload and download data between the two personal 

computers). The PC/AT is used as the simulation and analysis 

engine, while the Mac-II is used as the graphics engine. 

Simulation and analysis software is written in Pascal and runs 

on the PC-AT. Preliminary versions of the graphics software 

were written in Pascal for the PC/AT. However, the current 

graphics software tools, described in the next section, are 

commercially-available packages that run on the Mac-II. 

The following steps are performed via the PC/AT to 

generate monitoring data to be displayed by the graphics 

software tools: 

(1) Invoke the simulator. 

(2) Select a synthetic program. 

(3) Wait for the simulation to complete (post-processing 

of measurement data). 

(4) Sort the trace file according to time of event. 

(5) Map the processor addresses to physical grid 
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coordinates. 

(6) Obtain any desired microscopic or macroscopic 

statistics (some statistical measures may be 

calculated later via the graphics software). 

(7) Transform the trace file (monitoring data) and other 

measurement data into the data formats required by 

the graphics software tools (if needed). 

(8) Transfer the data to the graphics engine. 

For the mapping step, the hypercube network maps into physical 

two-dimensional and three-dimensional space via a standard 

gray code mapping of processor addresses to Cartesian 

coordinates [Fox et al., 1988]. Alternative mapping functions 

can be used, and constitute an avenue for future work. An 

example of a gray code mapping is given later in this chapter. 

The following steps are performed via the Mac-II to graph 

the monitoring and measurement data: 

(1) Capture the data from the simulation and analysis 

engine. 

(2) Invoke the graphics software tools and select the 

desired data presentation formats. 

The steps that comprise the post-processing of the event trace 

are summarized in Figure 6.2. 

Graphics Software 

As discussed in the previous chapter, the greatest power 

to evaluate program performance comes from applying graphical 

data analysis software for visualizing the measurement data. 

The graphics software of the prototype was selected to support 

the performance data presentation needs of complex computer 
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Figure 6.2. Post-processing of an event trace 
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systems. In particular, the two types of graphics prescribed 

for pictures of performance, profiles and data plots, are 

incorporated into a visual analysis tool. An example of the 

graphical interface of the visual analysis tool is illustrated 

in Figure 6.3. 

The tool supports a hierarchical presentation of data, 

which reduces the apparent complexity of system performance. 

That is, the user has the opportunity to view the activity of 

the system as a whole and also to selectively view the 

detailed activities of individual processors. The image 

window provides a global view of the system. Via a selection 

mechanism, a particular processor can be highlighted. Data 

specific to the highlighted processor can then be accessed via 

a pull-down menu. A profile window, which plots the value of 

a local performance parameter over time via a time-series 

profile, may be opened for the highlighted processor. If 

available, information about the portion of the program or 

network associated with the processor can also be accessed. 

With the current emphasis on visualizing scientific data, 

we have found several graphical software packages that, when 

used in combination, meet specific requirements of the visual 

analysis tool. Of course, these packages are separate from 

the monitoring system. In one sense that is good. It ensures 

an objective view of the monitoring and measurement data (at 

least beyond the collection and analysis stages) and indicates 

that performance monitoring data can be treated in as general 

a fashion as any other complex data set. Ideally, and 

ultimately for speed and simplicity, we want the graphics to 

be integrated in some way with the monitoring system. 

However, the graphical software packages are more than 
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Figure 6.3. Graphical interface of the visual analysis tool 
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sufficient to illustrate the kinds of data that can be 

displayed, the utility of different types of data plots, and 

the power of this approach to visualizing program performance. 

Four graphical data analysis software packages are used 

on the Mac-II. They are; 

(1) StatView (Abacus Concepts Inc.) 

(2) MacSpin (D^ Software Inc.) 

(3) NCSA Datascope 

(4) NCSA Image 

NCSA is the National Center for Supercomputing Applications at 

the University of Illinois, Urbana-Champaign. 

These graphics tools display multivariate (numerical) 

data and provide different views and options for analysis. 

The first three packages accept text files of data as input. 

StatView and MacSpin only require a tabular format for input 

data where the table consists of labeled columns of data. 

Datascope requires additional header information describing 

the data and specifies a row-column spreadsheet format for the 

data. Though it offers several unique functions, DataScope 

primarily facilitates using Image, a graphics software package 

with enhanced plotting options. Via DataScope, we can store a 

data file in a specialized format called the Hierarchical Data 

Format (HDF, also a product of NCSA). Image reads HDF files 

but not text files. 

StatView supports line and bar graphs. It is used to 

create profiles of individual processor performance or system 

performance over time. MacSpin is a powerful tool that 

supports the data plots referred to (in Chapter V) as dot or 

scatter plots. Data may be plotted in two or three 

dimensions, one variable (or parameter) may be selected and 
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used to color-code the dots, and one variable may be selected 

and used for animation. MacSpin is a natural choice for 

displaying the time-ordered event traces. 

Image is also very powerful; it supports the data plots 

referred to (in Chapter V) as cell or block plots. Within 

Image, these data plots are called raster graphs. Data is 

plotted in two dimensions (two independent variables), and the 

value of the variable of interest (the dependent variable) is 

denoted by color. Rather than drawing discrete blocks of 

pixels on the screen (an option within DataScope), Image 

interpolates the data via a local averaging operation to 

create a smoother picture. Other plot options give 

alternative representations to replace the use of color, 

including contour plots, 3D plots, shaded plots, and dither 

plots. Image works well to display the performance of the 

system at a particular moment in time. It is especially 

suited to show intensity (relative value within a range of 

values) variations of some metric. The displayed variable may 

be based on processor state (or activity), amount of work, or 

amount of traffic, among others. 

Examples of the graphs are shown in the next section when 

presenting the case studies. One point is worth reiterating. 

Color is often an important feature of the graphics for 

visualizing data. In some cases, animation is also important. 

Unfortunately, while both color and animation are easy to show 

on a computer's video display screen, these features are 

difficult to reproduce on paper. So, though some of the 

meaning inherent in color or animation may be represented via 

other forms on paper, certain qualities can only be perceived 

and appreciated on screen (or possibly via color photographs 
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of the screen). 

Case Studies in Visualization 

Post-processing of the event traces generated by the 

simulator transforms measurement data into snapshots of system 

performance, or system states, that can be statistically 

analyzed and graphically displayed. 

System configuration 

For the case studies presented in this section, the 

simulator is configured as an eight-dimensional (256-node) 

hypercube multicomputer. Although the approach to analyzing 

and visualizing program execution is independent of any 

specific architecture or machine, we selected the hypercube 

because of its popularity and commercial success thus far. 

There is nothing magical about the number of processor 

nodes, 256; smaller or larger numbers may be used. Smaller 

numbers of processors result in less overhead and allow us to 

inspect the trace files and evaluate whether the simulator and 

synthetic programs are working as expected. However, larger 

numbers of processors are the intended target. Unfortunately, 

they simply result in too much overhead for the resources 

comprising the prototype. Consequently, 256 processor nodes 

is a good compromise. It is large enough to be interesting 

(and thus requiring more sophisticated data presentation) but 

not so large to be impractical. 

The simulated hypercube is configured with the following 

hardware parameters; 

time per floating point operation = 15 microseconds 
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time per integer operation = l microsecond 

time to initiate a message transfer =400 microseconds 

time per byte in a message transfer = 2 microseconds 

These times are taken from an actual NCUBE hypercube machine 

[Gustafson et al., 1988]. 

The logical network of the 256-node hypercube is mapped 

onto a two-dimensional grid (physical network) using a 

standard gray code mapping operation [Fox et al., 1988]. 

Figure 6.4 illustrates this mapping for the simplified case of 

an eight-processor (three-dimensional) hypercube. Processor 

numbers in the logical network are associated with grid 

coordinates in the physical network and are assigned to grid 

positions. For the 256-node hypercube, the assignment of 

logical processor numbers to locations in the grid is 

specified in Figure 6.5. Observe that Processor 0 is mapped 

to the lower left cell at location (0,0). Its hypercube 

neighbors reside either in row 0 or in column 0, and include 

processor numbers 1, 2, 4, 8, 16, 32, 64, and 128, as 

illustrated. Also observe that hypercube nearest neighbors 

may not be physically near neighbors. 

The following five synthetic programs from the program 

library are studied in this section. 

Broadcast 

Collect 

1-D Shift (or Rotate) 

Quicksort 

1-D Wave Equation 

The first three programs implement collective communication 

algorithms. Recall, collective communication is communication 

in which all processor nodes in the system concurrently 
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Figure 6.4. Mapping a three-dimensional (eight-node) 
hypercube onto a two-dimensional grid (gray code 
mapping) 
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Figure 6.5. Assignment of processor addresses for an eight-
dimensional (256-node) hypercube to locations in 
a two-dimensional (16x16) grid (gray code 
mapping) 
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interact in message-passing activities to achieve some degree 

of global exchange of information. The last two programs are 

applications, involving computational as well as communication 

activities. Each program was executed by the simulator to 

obtain an event trace file. For the case studies, we have 

primarily reconstructed a sequence of system states via 

snapshots of system performance at particular times. 

Observations, or event records, resulting from each 

simulation were categorized according to a distribution of ten 

uniform time intervals spanning the execution time of the 

simulation. Snapshots of system performance were created at 

particular times during each time interval in direct 

proportion to the number of observations recorded for the time 

interval. The objective was to capture and illustrate the 

salient aspects of performance via representative snapshots 

while minimizing the time, storage, and computational effort 

involved. Selected statistical and graphical representations 

of performance are reported. 

Broadcast communication procrreun 

Broadcast is a collective communication routine in which 

one node receives data from the host computer and initiates a 

distribution of this data to all other nodes. A common 

broadcast algorithm distributes the data using a tree-like 

processor communication graph. The basic operation of 

Broadcast is graphically depicted in Figure 6.6. For 

illustrative purposes, it is shown for the simplified case of 

an eight-node hypercube. Processor 0, the top node of the 

broadcast tree, initiates the broadcast by sending messages to 

its hypercube neighbors. Note that the simpler eight-
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processor system is used to illustrate functionality, while 

the 256-processor system is the subject system in the 

simulations and is used to illustrate the visual analysis 

tool. 

In the simulation, performed on a 256-node hypercube, a 

100-byte message was broadcast among the processors. Table 

6.1 categorizes the observations (event records) resulting 

from the simulation according to a distribution of ten uniform 

time intervals. The computation-related events are recorded 

when processors have completed their portion of the broadcast 

and indicate the availability of the processors to do work. 

The communication-related events include interprocessor send 

and receive operations and processor waits. 

Selected global statistics for the system are documented 

in Tables 6.2 through 6.4. Table 6.2 is a key for the other 

tables, pairing global statistics with identifying alphabetic 

characters. Table 6.3 corresponds to snapshot number 6 (of 

12) at time 0.0072 seconds. Table 6.4 corresponds to snapshot 

number 10 (of 12) at time 0.0144 seconds. Local statistics 

can be calculated for individual processors. Tables 6.5 

through 6.7 document selected local statistics for two 

processors at particular times. Table 6.5 is a key for the 

other tables, pairing local statistics with identifying 

alphabetic characters. Processor 0 is detailed in Table 6.6, 

and Processor 100, in Table 6.7. 

Images of program execution (generated by NCSA Image) are 

depicted in Figures 6.7 through 6.21. Figures 6.7 through 

6.17 comprise an eleven-frame animated sequence of program 

states, corresponding, respectively, to the following snapshot 

times (in milliseconds): 0.9, 1.8, 3.6, 5.4, 7.2, 9, 10.8, 
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Figure 6.6. Basic operation of Broadcast on an eight-node 
hypercube 
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BROADCAST COLLECT 

Number of events: 1017 Number of events: 1758 
Total simulation time: 0.018 sec. Total simulation time; 0 

Distribution of events: Distribution of events 

Period A B C Period A B C 
0 0.0000 1 261 0 0.0000 192 863 
1 0.0018 4 20 1 0.0021 32 242 
2 0.0035 12 43 2 0.0042 16 161 
3 0.0054 26 71 3 0.0063 8 80 
4 0.0072 40 90 4 0.0084 0 59 
5 0.0090 43 84 5 0.0105 4 33 
6 0.0108 52 90 6 0.0126 0 26 
7 0.0126 42 65 7 0.0147 2 15 
8 0.0144 23 30 8 0.0168 0 13 
9 0.0162 10 10 9 0.0189 1 11 

QUICKSORT 1-D WAVE 

Number of events: 1785 
Total simulation time: 0.031 sec. 

Number of events: 6110 
Total simulation time: 0.1 sec. 

Distribution of events: Distribution of events: 

Period A B C Period A B G 
0 0 .0000 1 0 0 0.00 51 424 
1 0 .0031 0 0 1 0.01 181 324 
2 0 .0062 1 2 2 0.02 98 734 
3 0. .0093 0 0 3 0.03 170 808 
4 0, .0124 2 3 4 0.04 105 859 
5 0, ,0155 9 13 5 0.05 157 703 
6 0, ,0186 82 98 6 0.06 6 691 
7 0, ,0217 162 164 7 0.07 0 632 
8 0, ,0248 162 158 8 0.08 0 130 
9 0. 0279 91 72 9 0,09 0 37 

A - Starting time for time period (seconds) 
B — Number of computation-related events 
C - Number of communication-related events 

Table 6.1. Simulation results for the case studies 
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A : Cumulative work (operation count) 

B ; Number of computational periods 

C : Current work (operations) 

D : Cumulative computation time (seconds) 

E : Computational power (operations per second) 

F : Execution rate (operations per second) 

G : Percent of total time spent computing 

H : Cumulative traffic (byte count) 

I : Message count 

J : Current traffic (byte count) 

K : Cumulative communication time (seconds) 

L : Communication flow (bytes per second) 

M : Percent of total time spent communicating 

H : Cumulative wait time (seconds) 

0 ; Percent of total time spent waiting 

P : Fraction of communication time spent waiting 

Q : Communication overhead (communication : computation) 

R : Kularlty factor (operations of work per byte of traffic) 

S ; Number of channels in use 

1 : Percent of channels used (channel utilization) 

II ; Processor activity distribution (*) 

V ; Processor activity distribution (%) 

W : Processor concurrency (#), utilization (%) 

X : Channel concurrency (#), utilization (%) 

Y : Computational balance for time, operations 

Z : Communication balance for time, bytes 

-M, Mega or 10®; -K, Kilo or 10® 

Table 6.2. Key for global statistics 
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Execution time - 0.0072 seconds 

Sum (Total) Average Maximum 

H 7250 28 800 

I 73 0 8 

J 2000 8 100 

K 0.2732 0.00107 0.0072 

L 929 K 8.3 K 211 K 

M 14.82% 19.14% 100% 

N - - 0.0072 

0 - - 100% 

S 35 0.14 4 

T 0.8545% 0.8545% 25% 

SOHE COMPUTE SUP WAIT RCV 

U 0 49 9 187 11 

V 0.00 19.14 3.52 73.05 4.30 % 

H 256 100.00% 

X 35 0.85% 

Z 0.1482 0.0354 

Table 6.3. Broadcast routine. Selected global statistics for 
snapshot number 6 taken at 0.0072 seconds 



www.manaraa.com

121 

Execution time - 0.014 seconds 

Sura (Total) Average Maximum 

a 23400 91 800 

I 234 1 8 

J 4600 16 100 

K 2.1272 0.00831 0.014 

L 60S K 21 K 211 K 

M 59.35% 85.94% 100% 

N 2.0848 0.00814 0.014 

0 58.17% 80.55% 100% 

P 0.9801 0.7553 1.0 

S 55 0.21 4 

T 1.3428% 1.3428% 25% 

HOWE COMPUTE SNP WAIT RCV 

U 0 187 25 23 21 

V 0.00 73.05 9.77 8.98 8.20 % 

W 256 100.00% 

X 55 1.34% 

Z 0.5935 0.1143 

Table 6.4. Broadcast routine. Selected global statistics for 
snapshot number 10 taken at 0.0144 seconds 



www.manaraa.com

122 

A : Snapshot sequence number 

B : Time of snapshot (seconds) 

C : Execution time of processor (seconds) 

D : Action (O-NOHE, 1-COMPUIE, 2-SEHD, 3-WAIT, 4-HECEIVE, 5-IHPUT, 6-OUIPUT) 

E : Cumulative work (operation count) 

F : Number of computational periods 

G : Current work (operation count) 

H : Cumulative computation time (seconds) 

I : Computational power (rate of doing work, operations per second) 

J : Throughput (execution rate, operations per second) 

K : Percent of total time spent computing 

L : Cumulative local traffic (byte count) 

M : Number of messages for interprocessor connunication 

N : Current local traffic (byte count) 

0 ; Cumulative comminication time (seconds) 

P : Communication flow (rate of transferring messages, bytes per second) 

Q : Percent of total time spent communicating 

R : Cumulative wait time (seconds) 

S : Percent of total time spent waiting 

T : Fraction of communication time spent waiting 

U : Connunication overhead (connunication : computation) 

V : Granularity factor (operations of work per byte of traffic) 

W : Channel count (number of channels used) 

X : (Hiannel utilization (fraction of channels used) 

Table 6.5. Key for local statistics 
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A B c D L M N 0 P 0 R s I M X 

1 0.0000 0 .0000 2 0 0 0 0.0000 0.0 b 0.0000 

2 0.0009 0 ,0006 2 100 1 100 0.0000 - 0.00 0.0 0.0 1 0.0625 

3 0.0018 0, .0018 2 400 4 100 0.0000 - 0.00 0.0 0.0 4 0.2500 

4 0.0036 0. .0034 1 800 8 100 O.OQOO - 0.00 0.0 0.0 a 0.5000 

12 0.0180 0 .0038 1 800 8 0 0.0038 2.11E+05 100.00 0.0 0.0 0.0 - -

Table 6.6. Broadcast routine. Selected local statistics for 
Processor 0, (x,y) = (0,0) 
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A B C D L M N 0 P Q R S T W X 

6 0.0072 0. .0000 4 0 0 0 0. .0000 0.00 0.0000 0.00 0 0.0000 

7 0.0090 0. .0088 2 200 2 100 0. .0000 - 0.00 0.0082 93.18 2 0.1250 

12 0.0180 0. .0096 1 300 3 0 0. .0096 3.12E+04 100.00 0.0082 85.42 0.8542 2 0.1250 

Table 6.7. Broadcast routine. Selected local statistics for 
Processor 100, (x,y) = (7,4) 
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12.6, 14.4, 16.2, and 18. The displayed parameter represents 

the cumulative amount of local traffic, in number of bytes, 

resulting from message passing activities (sends and receives) 

of the processor at the indicated time. In these dither 

plots, lightness denotes relatively low intensity (small) 

values of the displayed parameter and darkness, high intensity 

(large) values. 

Observe how the traffic of the broadcasted message 

spreads throughout the system. It is apparent that Processor 

0 and its hypercube neighbors, especially those neighbors at 

the higher levels of the broadcast tree, account for the 

largest amounts of traffic. The region surrounding Processor 

255 is void of any traffic until the end of the simulation, 

since it is the last node to receive the broadcasted message. 

Figure 6.18 shows an alternative type of image, a three-

dimensional plot. The actual grid is shown and the third 

dimension portrays the displayed parameter. This image 

represents the same program state information as the image in 

Figure 6.15. Three additional images of program execution at 

14.4 milliseconds are depicted in Figures 6.19 through 6.21. 

In Figure 6.19, the displayed parameter is the cumulative 

amount of time spent by the processor in communication 

activities (sends, receives, and waits). Similarities between 

Figure 6.19 and Figure 6.15 can be observed. The differences 

arise primarily because processor waits are reflected in 

Figure 6.19 and show up as higher intensity regions in the 

image. These regions consist of processors residing at the 

interior nodes in the broadcast tree. Figure 6.20 illustrates 

the cumulative amount of time spent in processor waits. 

Finally, processor activity at the snapshot time is displayed 
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Figure 6.7. Picture of performance (dither plot): Broadcast, 
ss#2 at 0.9 msec., cumulative traffic (bytes) 
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Figure 6.8. Picture of performance (dither plot); Broadcast, 
ss#3 at 1.8 msec., cumulative traffic (bytes) 
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Figure 6.9. Picture of performance (dither plot): Broadcast, 
ss#4 at 3.6 msec., cumulative traffic (bytes) 
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Figure 6.10. Picture of performance (dither plot): Broadcast 
ss#5 at 5.4 msec., cumulative traffic (bytes) 
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Figure 6.11. Picture of performance (dither plot): Broadcast, 
ss#6 at 7.2 msec., cumulative traffic (bytes) 



www.manaraa.com

131 

#g 
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Figure 6.12. Picture of performance (dither plot); Broadcast 
ss#7 at 9 msec., cumulative traffic (bytes) 
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Figure 6.13. Picture of performance (dither 
ss#8 at 10.8 msec., cumulative 

plot): Broadcast 
traffic (bytes) 
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Figure 6.14. Picture 
ss#9 at 

of performance (dither 
12.6 msec., cumulative 

plot): Broadcast, 
traffic (bytes) 



www.manaraa.com

134 

'âi+i-':¥: 

Figure 6.15. Picture of performance (dither plot): Broadcast, 
ss#10 at 14.4 msec., cumulative traffic (bytes) 
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Figure 6.16. Picture of performance (dither plot); Broadcast, 
ss#ll at 16.2 msec., cumulative traffic (bytes) 
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Figure 6.17. Picture of performance (dither plot); 
ss#12 at 18 msec., cumulative traffic 

Broadcast, 
(bytes) 
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in Figure 6.21. Black denotes computational activity; gray, 

communication activity; and white, no activity. 

Collect communication program 

Collect is a collective communication routine in which 

one node receives data from all other nodes and sends the data 

to the host computer. A common collect algorithm transfers 

the data using a tree-like processor communication graph. The 

basic operation of Collect is graphically depicted in Figure 

6.22. For illustrative purposes, it is shown for the 

simplified case of an eight-node hypercube. Processor 0, the 

top node of the collect tree, receives messages from all other 

nodes via its hypercube neighbors. 

In the simulation, performed on a 256-node hypercube, a 

100-byte message was collected from the processors. Table 6.1 

categorizes the observations (event records) resulting from 

the simulation according to a distribution of ten uniform time 

intervals. The computation-related events are recorded when 

processors have completed their portion of the collect and 

indicate the availability of the processors to do work. The 

communication-related events include interprocessor send and 

receive operations and processor waits. 

Selected global statistics for the system are documented 

in Tables 6.2, 6.8, and 6.9. Table 6.2 is a key for the other 

tables. Table 6.8 corresponds to snapshot number 8 (of 17) at 

time 0.00315 seconds. Table 6.9 corresponds to snapshot 

number 15 (of 17) at time 0.0168 seconds. Local statistics 

can be calculated for individual processors. Tables 6.5, 

6.10, and 6.11 document selected local statistics for two 

processors at particular times. Table 6.5 is a key for the 
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Figure 6.18. Picture of performance (3D plot): Broadcast, 
ss#10 at 14.4 msec., cumulative traffic (bytes) 
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ma# 

Figure 6.19. Picture of performance (dither plot); Broadcast, 
ss#10 at 14.4 msec., cumulative communication 
time 
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Figure 6.20. Picture of performance (dither plot): Broadcast, 
ss#10 at 14.4 msec., cumulative wait time 
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Figure 6.21. Picture of performance (dither plot): Broadcast, 
ss#10 at 14.4 msec., processor activity (black: 
computing; gray: communicating? white: none) 
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Figure 6.22. Basic operation of Collect on an eight-node 
hypercube 
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other tables. Processor 0 Is detailed in Table 6.10, and 

Processor 100, in Table 6.11. 

Images of program execution (generated by NCSA Image) are 

depicted in Figures 6.23 through 6.29. Figures 6.23, 6.24, 

and 6.29 display the cumulative amount of local traffic, in 

number of bytes, resulting from message passing activities 

(sends and receives) of the processor at the indicated time. 

The first of these three images corresponds to a state of the 

system near the beginning of the simulation; the second image, 

near the middle; and the third image, near the end. Very 

definite patterns can be observed. The vertical shaded 

regions roughly correspond to levels in the collect tree. It 

is apparent that nodes at the higher levels account for the 

largest amounts of traffic. By the end of Collect, hot spots 

of traffic are found at Processor 0 and its hypercube 

neighbors at the higher levels of the collect tree. 

Figure 6.25 shows a three-dimensional image that 

represents the same program state information as the image in 

Figure 6.24. Three additional images of program execution at 

a snapshot time of 3.15 milliseconds are depicted in Figures 

6.26 through 6.28. In Figure 6.26, the displayed parameter is 

the cumulative amount of time spent by the processor in 

communication activities (sends, receives, and waits). 

Similarities between Figure 6.26 and Figure 6.24 can be 

observed. Figure 6.27 illustrates the cumulative amount of 

time spent in processor waits. Finally, processor activity at 

the snapshot time is displayed in Figure 6.28. Black denotes 

computational activity; gray, communication activity; and 

white, no activity. 
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Execution time • 0.003 seconds 

Sum (Total) Average Maximum 

B 35150 137 600 

I 352 1 6 

J 3200 13 ioo 

K 0.2368 0.00093 0.003 

L 28.4 M 204 K 250 K 

M 30.83% 87.5% 100% 

N 0.0778 0.0003 0.0024 

0 10.13% 13.06% 85.71% 

P 0.3285 0.0844 0.6 

S 190 0.75 6 

T 4.6631% 4.6631% 37.5% 

NONE COMPUTE SND WAIT RCV 

U 0 224 8 15 9 

V 0.00 87.5 3.13 5.86 3.52 

W 256 100.00% 

X 191 4.66% 

Z 0.3083 0.2288 

Table 6.8. Collect routine. Selected global statistics for 
snapshot number 8 taken at 0.00315 seconds 
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Execution time = 0.016 seconds 

Sum (Total) Average Maximum 

H 49450 193 3000 

I 495 2 30 

J 600 2 100 

K 0.458 0.00179 0.015 

L 6.59 M 226 K 250 K 

M 11.18% 99.22% 100% 

N 0.1424 0.00056 0.008 

0 3.48% 12.95% 60% 

F 0.3109 0.1257 0.6 

S 61 0.24 3 

T 1.4893% 1.4893% 18.75% 

SOKE COMPUTE SND WAIT RCV 

U 0 250 4 11 

V 0.00 97.66 1.56 0.39 0.39 % 

W 256 100.00% 

X 61 1.49% 

Z 0.1193 0.0644 

Table 6.9. Collect routine. Selected global statistics for 
snapshot number 15 taken at 0.0168 seconds 
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A B C D L M N R S 

2 0.00035 0. .0000 4 0 0 0 0, .00000 

3 0.00070 0. .0004 3 100 1 100 0. .00040 100 .00 

5 0.00140 0. .0010 4 200 2 100 0. .00040 40 .00 

7 0.00210 0. .0016 4 300 3 100 0. ,00040 25 .00 

8 0.00315 0. .0028 4 500 5 100 0. .00160 57, .14 

g 0.00420 0. .0040 4 700 7 100 0, ,00280 70, .00 

10 0.00630 0. ,0058 4 1000 10 100 0. ,00340 58, .62 

11 0.00840 0. 0082 4 1400 14 100 0. ,00460 56, .10 

12 0.01050 0. ,0100 4 1700 17 100 0. ,00580 58, .00 

13 0.01260 0. 0120 3 2100 21 100 0. 00580 48. .33 

14 0.01470 0. 0140 4 2400 24 100 0. 00680 48. .57 

15 0.01680 0, ,0160 4 2700 27 100 0. ,00780 48, .75 

16 0.01890 0, ,0180 4 3100 31 100 0. ,00780 43. ,33 

17 0.02100 0. ,0210 3 3600 36 100 0. ,00980 46. .67 

Table 6.10. Collect routine. Selected local statistics for 
Processor 0, (x,y) = (0,0) 
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A B C D L M N O P  Q R S 

2 0 .00035 0.0000 4 100 1 100 - - 0 .0000 

3 0, .00070 0.0004 3 200 2 100 - 0 .0000 0.0 

5 0. ,00140 0.0010 2 300 3 100 - 0, .0006 60.0 

6 0. .00175 0.0016 3 400 4 100 - 0. ,0006 37.5 

7 0. ,00210 0.0020 2 500 5 100 - 0, ,0006 30.0 

17 0. 02100 0.0030 1 600 G 0 0.003 2.00E+05 100.00 0. 0006 20.0 

Table 6.11. Collect routine. Selected local statistics for 
Processor 100, (x,y) = (7,4) 
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Figure 6.23. Picture of performance (dither plot); 
ss#2 at 0.35 msec., cumulative traffic 

Collect, 
(bytes) 
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Figure 6.24. Picture of performance (dither plot): 
ss#8 at 3.15 msec., cumulative traffic 

Collect, 
(bytes) 
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Figure 6.25. Picture of performance (3D plot): Collect, 
ss#8 at 3.15 msec., cumulative traffic (bytes) 
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Figure 6.26. Picture of performance (dither plot); Collect, 
ss#8 at 3.15 msec., cumulative communication 
time 
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Figure 6.27. Picture of performance (dither plot): Collect, 
ss#8 at 3.15 msec., cumulative wait time 
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Figure 6.28. Picture of performance (dither plot); Collect, 
ss#8 at 3.15 msec., processor activity (black: 
computing; gray; communicating; white; none) 
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Figure 6.29. Picture of performance (dither plot): Collect, 
ss#l5 at 16.8 msec., cumulative traffic (bytes) 
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Shift communication program 

Shift is a collective communication routine in which 

processors transfer data around a ring of processors. For a 

one-dimensional shift right, each processor sends data to its 

right neighbor and receives data from its left neighbor. The 

basic operation of Shift is graphically depicted in Figure 

6.30. For illustrative purposes, it is shown for the 

simplified case of an eight-node hypercube. In the 

simulation, performed on a 256-node hypercube, a 100-byte 

message was shifted by the processors. 

Four images of program execution (generated by NCSA 

Image) are depicted in Figures 6.31 through 6.34. The 

displayed parameter in Figure 6.31, corresponding to snapshot 

number 4 (of 16) at time 0.7 (of 7) milliseconds, is 

cumulative time spent waiting by a processor. Processors that 

are highlighted in this image are in the receive phase of the 

shift algorithm and have spent time waiting, while the other 

processors are in the send phase of the algorithm. The images 

in the next three figures correspond to snapshot number 12 (of 

16) at 4.2 (of 7) milliseconds. Figure 6.32 illustrates 

processor activity. Black denotes computational activity; 

gray, communication activity; and white, no activity. Recall 

that computational activity is recorded when processors have 

completed their portion of the shift and indicate the 

availability of the processors to do work. The displayed 

parameters in Figures 6.33 and 6.34 are, respectively, 

cumulative amount of time spent by the processor in 

communication activities (sends, receives, and waits); and 

cumulative amount of time spent waiting by a processor. 
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Figure 6.30. Basic operation of Shift on an eight-node 
hypercube 
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•as 

Figure 6.31. Picture of performance (dither plot): Shift, 
ss#4 at 0.7 msec., cumulative wait time 
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Figure 6.32. Picture of performance (dither plot): Shift, 
ss#12 at 4.2 msec., processor activity (black: 
computing; gray: communicating; white: none) 
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Figure 6.33. Picture of performance (dither plot): Shift, 
ss#12 at 4.2 msec., cumulative communication 
time 
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Figure 6.34. Picture of performance (dither plot): Shift, 
ss#12 at 4.2 msec., cumulative wait time 
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The collective communication programs spawn communication 

activities and generate message traffic in the system in some 

pattern. We may observe the flow or movement of communication 

quanta, as evidenced by images of processor activity, and we 

may also observe amounts of communication. These algorithms 

are typically used within larger application programs. Then, 

in addition to the traffic from the communication routines, 

there is work being done by the computational kernel of the 

application program. Thus, we may observe the flow or 

movement of computation quanta (if any occurs), and we may 

also observe amounts of work being done. This is illustrated 

via the following two case studies. 

Divide-emd-concpaer quicksort procrram 

Quicksort is an application program that uses a divide-

and-conquer approach to sorting a list of numbers. One 

processor begins with the original list, divides the list in 

half, keeps half of the list, and sends half of the list to a 

neighboring processor. This continues recursively using a 

tree-like processor communication graph until all processors 

have a list. Each processor locally sorts its list. The 

basic operation of Quicksort is graphically depicted in Figure 

6.35. For illustrative purposes, it is shown for the 

simplified case of an eight-node hypercube. Processor 0, the 

top node of the quicksort tree, initially has the original 

list. 
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Figure 6.35. Basic operation of Quicksort on an eight-node 
hypercube 
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In the simulation, performed on a 256-node hypercube, a 

4096-byte list was sorted on the processor ensemble. Table 

6.1 categorizes the observations (event records) resulting 

from the simulation according to a distribution of ten uniform 

time intervals. 

Selected global statistics for the system are documented 

in Tables 6.2, 6.12, and 6.13. Table 6.2 is a key for the 

other tables. Table 6.12 corresponds to snapshot number 10 

(of 17) at time 0.0227 seconds. Table 6.13 corresponds to 

snapshot number 15 (of 17) at time 0.0279 seconds. Local 

statistics can be calculated for individual processors. 

Tables 6.5, 6.14, and 6.15 document selected local statistics 

for two processors at particular times. Table 6.5 is a key 

for the other tables. Processor 0 is detailed in Table 6.14, 

and Processor 100, in Table 6.15. 

Images of program execution (generated by NCSA Image and 

MacSpin) are depicted in Figures 6.36 through 6.48. Figures 

6.36 through 6.39 are images of program states at 0.0227 

seconds (snapshot number 10}. The displayed parameters are, 

respectively, cumulative amount of work, in number of 

operations, done by the processor at the indicated time; 

cumulative amount of time spent by the processor in 

computation activities (i.e., doing work); cumulative amount 

of time spent by the processor in communication activities 

(sends, receives, and waits); and processor activity. In 

Figure 6.39, black denotes computational activity; gray, 

communication activity; and white, no activity. 

Figures 6.42 through 6.46 are images of program states at 

0.0279 seconds (snapshot number 15). The displayed parameters 

are identical to those presented for snapshot number 10. 
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Execution time - 0.022 seconds 

Sum (Total) Average Maximum 

A 23728 93 8176 

B 147 1 9 

C 368 1 64 

D 0.0416 0.00016 0.0136 

E 8.56 M 20.6 K 1.02 M 

F 1.08 M 4.38 K 409 K 

G 0.74% 0.77% 68% 

B 10576 41 4080 

I 85 0 8 

J 2016 8 512 

K 0.0658 0.00026 0.006 

L 4.02 M 34.4 K 1.2 M 

M 1.17% 1.19% 27.27% 

Q 1.5817 0.0522 3.0 

R 2.2436 0.2559 2.0039 

S 25 0.098 1 

T 0.61% 0.61% 6.25% 

NONE COMPUTE SUP WAIT RCT 

U 216 15 7 0 18 

V 84.38 5.86 2.73 0.00 7.03 X 

H 40 15.63% 

X 25 0.61% 

Y 0.0119 0.0113 

Z 0.0428 0.0101 

Table 6.12. Quicksort program. Selected global statistics 
for snapshot number 10 taken at 0.02273 seconds 
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Execution time - 0.027 seconds 

Sum (Total) Average Maximum 

A 34592 135 8176 

B 419 2 9 

C 960 4 64 

D 0.0726 0.00028 0.0136 

E 20 M 42.2 K 2.03 M 

F 1.28 M 5.86 K 409 K 

G 1.05% 1.22% 68% 

B 15576 61 4080 

I 219 1 8 

J 704 3 128 

K 0.1728 0.00068 0.006 

L 2.25 M 54.1 K 1.2 M 

M 2.5% 2.82% 27.27% 

Q 2.3802 0.1283 5.0 

R 2.2209 0.7946 2.0039 

S 25 0.098 2 

I 0.61% 0.61% 12.5% 

NONE COMPUTE SND WAIT RCV 

U 190 42 6 0 18 

V 74.22 16.41 2.34 0.00 7.03 Z 

W 66 25.78% 

X 25 0.61% 

Y 0.0209 0.0165 

Z 0.1125 0.0149 

Table 6.13. Quicksort program. Selected global statistics 
for snapshot number 15 taken at 0.0279 seconds 
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A B c D £ F G H I J K 

3 0 .0062 0 .0000 2 4096 1 4096 0.0000 

S 0, .0124 0 .0086 2 6144 2 2048 0.0082 7, ,49E+05 7.14E+05 95.35 

6 0. .0155 0 .0150 1 7168 3 0 0.0126 5. ,69E+05 4.78E+05 84.00 

7 0, .0186 0 .0180 2 8064 6 0 0.0136 5. .93E+05 4.48E+05 75.56 

17 0, 0310 0 .0200 0 8176 9 0 0.0136 6. , OlE+05 4.09E+05 68.00 

L M N 0 P Q R S T U V W X 

0 0 0 0.0000 0.0 0 0.0000 

2048 1 0 0.0004 5. .12E+06 4.65 0.0 0.0 0 .0 0.0488 3.0 0 0.0000 

3584 3 0 0.0004 8. CD 1
 

2.67 0.0 0.0 0 .0 0.0317 2.0 0 0.0000 

4032 6 64 0.0014 2. .88E+06 7.78 0.0 0.0 0 .0 0.1029 2.0 1 0.0625 

4080 8 0 0.0034 1. .20E+06 17.00 0.0 0.0 0 .0 0.2500 2.0 1 0.0625 

Table 6.14. Quicksort program. Selected local statistics for 
Processor 0, (x,y) = (0,0) 
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A B C D E F G H I J K 

8 0.02015 0.000 4 0 0 0 0.000 

9 0.02170 0.021 0 32 1 32 0.000 - 1.52E+03 0.00 

17 0.03100 0.022 0 48 2 0 0.001 4.80E+04 2.18E+03 4.55 

L M H W X 

0  0  0  0 . 0  -  -  0 . 0  

32 1 0 0.0 - 0.0 0.0 0.0 -

48 2 0 0.0 - 0.0 0.0 0.0 - 0 . 0  

0  0 . 0  

1.0 0 0.0 

1.0 0 0.0 

Table 6.15. Quicksort program. Selected local statistics for 
Processor 100, (x,y) = (7,4) 
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Figure 6.43 shows a three-dimensional image that represents 

the same program state information as the image in Figure 

6.42. 

By comparing snapshot number 10 with snapshot number 15, 

observe how the work emanates from Processor 0 into the rest 

of the system. Most of the work is localized around Processor 

0, as might be expected. In fact, because the length of the 

original list is small compared to the size of the system 

(only sixteen numbers remain to be sorted on each processor), 

we see that the bulk of the system has relatively little work 

to do. Viewing the snapshots of processor activity, we can 

observe the spread of activity in the system (as Processor 0 

distributes work to its hypercube neighbors) and also the mix 

of computational and communication activities. 

Figures 6.40, 6.41, 6.47, and 6.48 are dot plots of 

program activity generated by MacSpin. As in the images, a 

two-dimensional, 16x16 grid of processors is created. Visible 

dots denote active processors, and thus this format presents a 

visual display of concurrency and system utilization. Figures 

6.40 and 6.41 correspond to snapshot number 10, and Figures 

6.47 and 6.48, to snapshot number 15. Two different modes of 

observability are used. In Figures 6.40 and 6.47, all 

processors recording activity in the window of time spanning 

the initial time through the snapshot time are visible. 

Alternatively, in Figures 6.41 and 6.48, only those processors 

recording activity in the window of time spanning one percent 

below the snapshot time to one percent above the snapshot time 

are visible. In the former case, cumulative activity is 

presented; and in the latter case, (nearly) instantaneous 

activity is presented. Observe the similarities between 
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Figures 6.39 and 6.40 and between Figures 6.46 and 6.47. 

Finally, another type of data plot can be generated by 

MacSpin that shows both temporal and spatial activity of the 

system via a single plot. An event space-time profile 

displays the distribution of events over time across all 

processors. Event profiles are depicted in Figures 6.49 

through 6.53. Time is displayed on the horizontal axis, 

ranging from 0 seconds through the total execution time (here, 

0.031 seconds). Processor addresses are displayed on the 

vertical axis, ranging from address 0 through address 255. A 

dot denotes the occurrence of an event at the indicated time 

on the indicated processor. In Figure 6.49, all types of 

events are shown as dots. In Figure 6.50, activity-related 

events are marked with "x". In Figures 6.51 through 6.53, 

computing, sending, and receiving events, respectively, are 

marked with "x". Note in Figure 6.52 how easily we can 

observe that only half of the processors perform send 

operations in Quicksort. 

One-dimensional wave equation procrram 

1-D Wave is an application program that uses a domain 

decomposition approach to solving the wave equation in one 

dimension using a finite difference method [Fox et al., 1988]. 

The problem domain (here, linear) is divided equally among all 

processors; that is, each processor is allocated the same 

number of points in the discretized domain. All processors 

are broadcast an initial set of data and then iteratively 

converge to a solution. Each iteration consists of a 

communication step followed by a computation step. The 

communication step involves an exchange of endpoint data 
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Figure 6.36. Picture of performance (dither plot); Quicksort, 
ss#10 at 22.7 msec., cumulative work 
(operations) 
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Figure 6.37. Picture of performance (dither plot): Quicksort, 
ss#10 at 22.7 msec., cumulative computation time 
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Figure 6.38. Picture of performance (dither plot): Quicksort, 
ss#10 at 22.7 msec., cumulative communication 
time 
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Figure 6.39. Picture of performance (dither plot); Quicksort, 
ss#10 at 22.7 msec., processor activity (black: 
computing; gray: communicating; white; none) 
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Figure 6.40. Picture of performance (dot plot): Quicksort, 
at 23 msec., cumulative activity 
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Figure 6.41. Picture of performance (dot plot): Quicksort, 
at 23 msec., instantaneous activity 
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Figure 6.42. Picture of performance (dither plot): Quicksort, 
ss#15 at 27.9 msec., cumulative work 
(operations) 
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6.43 .  Picture ot^ 
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Figure 6.44. Picture of performance (dither plot): Quicksort, 
ss#15 at 27.9 msec., cumulative computation time 
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Figure 6.45. Picture of performance (dither plot); Quicksort 
ss#15 at 27.9 msec., cumulative communication 
time 
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Figure 6.46. Picture of performance (dither plot); Quicksort, 
ss#15 at 27.9 msec./ processor activity (black: 
computing; gray; communicating; white; none) 
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Figure 6.47. Picture of performance (dot plot); Quicksort 
at 28 msec., cumulative activity 



www.manaraa.com

182 

Figure 6.48. Picture of performance (dot plot): Quicksort, 
at 28 msec., instantaneous activity 



www.manaraa.com

183 

Address 

. : • • . : I ; 

I . • 

: i l  I  i ;  
. •.niiiiiil! 

Time 

Figure 6.49. Event space-time profile: Quicksort. Time: 0 
31 msec.. Addresses: 0 - 255, • : event 
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Figure 6.50. Event space-time profile: Quicksort. Time: o -
31 msec.. Addresses; 0 - 255, x : activity event 
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Figure 6.51. Event space-time profile; Quicksort. Time: 0 
31 msec.. Addresses: 0 - 255, x : compute event 
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Figure 6.52. Event space-time profile: Quicksort. Time: 0 
31 msec., Addresses; 0 - 255, x ; send event 
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Figure 6.53. Event space-time profile: Quicksort. Time: 0 -
31 msec.. Addresses: 0 - 255, x : receive event 
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values between processors via shift left and shift right 

collective communication routines. The final results from all 

processors are collected and sent to the host. 

In the simulation, performed on a 256-node hypercube, 

each processor was assigned 100 points of the problem domain. 

Table 6.1 categorizes the observations (event records) 

resulting from the simulation according to a distribution of 

ten uniform time intervals. 

Selected global statistics for the system are documented 

in Tables 6.2 and 6.16 through 6.19. Table 6.2 is a key for 

the other tables. Table 6.16 corresponds to snapshot number 4 

(of 37) at time 0.01 seconds; Table 6.17, snapshot number 12 

at time 0.03 seconds; Table 6.18, snapshot number 23 at time 

0.052 seconds; and Table 6.19, snapshot number 36 at 0.09 

seconds. Local statistics can be calculated for individual 

processors. Tables 6.5, 6.20, and 6.21 document selected 

local statistics for two processors at particular times. 

Table 6.5 is a key for the other tables. Processor 0 is 

detailed in Table 6.20, and Processor 100, in Table 6.21. 

Images of program execution (generated by NCSA Image) are 

depicted in Figures 6.54 through 6.63. Figures 6.54 and 6.55 

correspond to snapshot number 4 at 0.01 seconds. The 

displayed parameters are, respectively, processor activity and 

cumulative amount of time spent by the processor in 

communication activities (sends, receives, and waits). By 

comparing these images with those for Broadcast, we can 

observe that broadcasting activities are dominating program 

execution early in the simulation. 



www.manaraa.com

189 

Execution time - 0.01 seconds 

Sum (Total) Average Maximum 

A 65000 254 1000 

B 65 0 1 

C 63000 246 1000 

F 6.5 M 33.8 K 357 K 

H 40400 158 3200 

I 101 0 8 

J 14000 55 400 

K 0.5264 0.00206 0.01 

I 4.07 M 31.8 K 727 K 

M 20.56% 25.39% 100.00% 

N - 0.00286 0.01 

0 28.64% 32.08% 100.00% 

P - 0.1959 0.92 

R 1.6089 0.4096 2.5 

S 53 0.21 6 

T 1.29% 1.29% 37.5% 

HONE COMPUTE SHD WAIT RCV 

U 0 63 10 158 25 

V 0.00 24.61 3.91 61.72 9.77 % 

H 256 100.00% 

X 53 1.29% 

Y - 0.25 

Z 0.2055 0.0493 

Table 6.16. 1-D Wave 
snapshot 

program. Selected global statistics for 
number 4 taken at 0.01 seconds 
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Execution time - 0.03 seconds 

Sum (Total) Average Maximum 

A 434000 1695 3000 

B 345 1 2 

C 211000 824 2000 

D 2.1616 0.00844 0.0154 

E 28.5 H 80.1 K 205 K 

F 14.5 M 67.2 K 130 K 

G 28.15% 29.76% 66.96% 

H 103048 403 3216 

I 517 2 12 

J 6396 25 400 

K 3.9114 0.01528 0.03 

L 6.01 M 56.6 K 309 K 

M 50.93% 65.69% 100.00% 

N 3.2512 0.0127 0.024 

0 42.33% 55.52% 96% 

P 0.8312 0.8313 -

Q 1.8095 0.4894 1.0 

R 4.2116 2.8185 7.2115 

S 230 0.89 5 

T 5.566% 5.566% 31.25% 

NOUE COMPUTE SHD WAIT RCV 

U 0 142 SO 33 ' 31 

V 0.00 55.47 19.53 12.89 12.11 Z 

H 256 100.00% 

X 228 5.57% 

Y 0.5483 0.5651 

Z 0.5093 0.1252 

Table 6.17. 1-D Wave program. Selected global statistics for 
snapshot number 12 taken at 0.03 seconds 
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Execution time ~ 0.052 seconds 

Sum (Total) Average Maximum 

A 1251000 

B 673 

C 353000 

D 5.6266 

E 27.3 M 

F 24.1 M 

G 42.27% 

H 105642 

I 1166 

J 520 

K 6.338 

L 4.22 M 

M 47.61% 

N 3.838 

0 28.83% 

P 0.6055 

Q 1.1265 

R 11.8419 

S 250 

T 6.18% 

4887 6000 

3 3 

1379 3000 

0.02198 0.0304 

216 K 411 K 

101 K 146 K 

45.4% 72.2% 

413 3232 

5 16 

2 4 

0.02476 0.052 

36.3 K 182 K 

51.12% 100% 

0.01499 0.033 

31.03% 63.48% 

0.6482 

1.138 2.4667 

7.9323 13.8889 

0.99 5 

6.18% 31.25% 

RONE COMPUTE SHD WAIT RCV 

U 0 123 52 32 49 

V 0.00 48.05 20.31 12.50 19.14 % 

H 256 100.00% 

X 253 6.18% 

Ï 0.7230 0.8145 

Z 0.4761 0.1277 

Table 6.18. 1-D Wave program, 
snapshot number 23 

Selected global statistics for 
taken at 0.052 seconds 
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Execution time = 0.09 seconds 

Sum (Total) Average Maximum 

A 1536000 6000 6000 

B 768 3 3 

C 0 0 0 

D 8.2966 0.03241 0.0454 

E - 209 K 411 K 

F 17.1 H 87 K 103 K 

G 36.01* 47.35% 78.28% 

H 302896 1183 14832 

I 1771 7 45 

J 102400 400 400 

K 7.2294 0.02824 0.057 

L 45.6 M 95.7 K 899 K 

M 31.38% 40.46% 78.08% 

N 4.3962 0.01717 0.053 

0 19.08% 24.41% 72.6% 

P 0.6081 0.6535 -

Q 0.8714 1.0778 3.8 

R 5.071 4.6558 7.2115 

S 1100 4.3 -

T 26.56% 26.56% -

ROUE COMPUTE SSD WAIT RCV 

U 0 0 253 2 1 

V 0.00 0.00 98.83 0.78 0.39 % 

W 256 100.00% 

X 1088 26.56% 

Ï 0.7138 1.0 

Z 0.4954 0.0798 
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A B C D E F G H I J K 

1 0 .00000 0 .0000 2 0 0 0 0.0000 

2 0 .00333 0 .0032 2 0 0 0 0 .0000 - 0 .OOE+00 0.00 

6 0 .01667 0 .0044 2 1000 1 1000 0 .0000 - 2 .27E+05 0.00 

8 0 .02200 0 .0200 2 1000 1 0 0 .0146 6 .85E+04 5 .OOE+04 73.00 

g 0 .02400 0 .0240 1 1000 1 0 0 .0146 6 .85E+04 4 .17E+04 60.83 

16 0 .03800 0 .0250 2 3000 2 0 0 .0146 2 .05E+05 1 .20E+05 58.40 

17 0 .04000 0, .0400 2 3000 2 0 0. ,0146 2. ,05E+05 7. ,50E+04 36.50 

25 0 .05600 0, .0420 3 6000 3 0 0. ,0146 4, ,llE+05 1, ,43E+05 34.76 

26 0. ,05800 0. .0570 4 6000 3 0 0. ,0146 4, ,llE+05 1. ,05E+05 25.61 

27 0, .06000 0. .0590 4 6000 3 0 0. .0146 4. . llE+05 1. .02E+05 24.75 

28 0. .06250 0. 0620 3 6000 3 0 0. .0146 4. .llE+05 9. .68E+04 23.55 

29 0. .06500 0. 0650 4 6000 3 0 0, 0146 4, , llE+05 9. ,23E+04 22.48 

30 0. .06750 0. ,0670 3 6000 3 0 0.0146 4. .llE+05 8. .95E+04 21.79 

31 0. .07000 0. 0700 3 6000 3 0 0. 0146 4. , llE+05 8, .57E+04 20.86 

32 0. .07250 0. 0710 4 6000 3 0 0. 0146 4. llE+05 8. 45E+04 20.56 

33 0. 07500 0.0750 3 6000 3 0 0. 0146 4. llE+05 8. OOE+04 19.47 

34 0. 07750 0. 0770 4 6000 3 0 0. 0146 4. llE+05 7. 79E+04 18.96 

35 0. 08000 0. 0800 3 6000 3 0 0. 0146 4. llE+05 7. 50E+04 18.25 

36 0. 09000 0. 0890 3 6000 3 0 0.0146 4. llE+05 6. 74E+04 16.40 

37 0. 10000 0. 0990 3 6000 3 0 0. 0146 4. llE+05 6. 06E+04 14.75 

L M « 0 e 1 Q R S T U V 

0 0 0 0 .0000 0 .000 . 

2400 6 400 0 .0000 - 0 .00 0 .000 0 .00 - - 0 .0000 

3200 8 0 0 .0044 7 .27E+05 100 .00 0 .000 0 .00 0.0000 - 0. ,3125 

3204 9 4 0.0044 7 .28E+05 22 .00 0 .000 0 .00 0.0000 0.3014 0, .3121 

3212 11 4 0 .0044 7 .30E+05 18 .33 0 .004 16 .67 0.9091 0.3014 0. ,3113 

3216 12 4 0 ,0104 3 .09E+05 41 .60 0 ,004 16 .00 0.3846 0.7123 0. .9328 

3220 13 4 0, ,0104 3. ,lOE+05 26 .00 0. ,004 10. .00 0.3846 0.7123 0. .9317 

3232 16 4 0. .0274 1. ,18E+05 65 .24 0. .005 11, ,90 0.1825 1.8767 1, .8564 

3232 16 4 0. .0274 1, ,18E+05 48 .07 0, ,005 8. ,77 0.1825 1.8767 1. .8564 

3632 17 400 0. .0274 1. ,33E+05 46 ,44 0. 022 37, ,29 0.8029 1.8767 1. ,6520 

4432 19 400 0. .0274 1, .62E+05 44. ,19 0. .023 37. .10 0.8394 1.8767 1. ,3538 

5632 22 400 0. ,0274 2. .06E+05 42. ,15 0. ,025 38. .46 0.9124 1.8767 1. 0653 

6032 23 400 0. ,0274 2. 20E+05 40. .90 0, ,027 40. .30 0.9854 1.8767 0. 9947 

7232 26 400 0. 0274 2. ,64E+05 39. .14 0, ,029 41, .43 1.0584 1.8767 0.8296 

7632 27 400 0. ,0274 2. 79E+05 38. .59 0, ,030 42. .25 1.0949 1.8767 0. 7862 

8832 30 400 0, ,0274 3. ,22E+05 36. .53 0.031 41. .33 1.1314 1.8767 0. 6793 

9632 32 400 0. 0274 3. ,52E+05 35. ,58 0. 031 40. ,26 1.1314 1.8767 0. 6229 

10432 34 400 0. 0274 3. 81E+05 34. ,25 0. 034 42. 50 1.2409 1.8767 0. 5752 

13632 42 400 0. 0274 4. 98E+05 30. 79 0. 038 42. 70 1.3869 1.8767 0. 4401 

16832 50 400 0. 0274 6. 14E+05 27. ,68 0. 044 44, 44 1.6058 1.8767 0. 3565 

Table 6.20. 1-D Wave program. Selected local statistics for 
Processor 0, (x,y) = (0,0) 



www.manaraa.com

194 

A B C D E F G B I J 1 K L 

3 0.00667 0.000 4 0 0 0 0 .000 0 

4 0.01000 0.010 2 0 0 0 0 .000 - 0 .OOE+00 0 .00 400 

10 0.02600 0.012 3 1000 1 0 0 .000 - 8 .33E+04 0 .00 1200 

11 0.02800 0.028 2 1000 1 0 0 .000 - 3 .57E+04 0 .00 1208 

12 0.03000 0.029 1 1000 1 0 0, .000 3, .45E+04 0 .00 1212 

19 0.04400 0.031 2 3000 2 0 0, .000 g. .68E+04 0 .00 1216 

20 0.04600 0.046 4 3000 2 0 0, .000 6, .52E+04 0 .00 1220 

21 0.04800 0.048 1 3000 2 0 0. .000 6, .25E+04 0. .00 1232 

28 0.06250 0.049 2 6000 3 3000 0, .000 1. .22E+05 0. .00 1232 

29 0.06500 0.064 4 6000 3 0 0. ,015 4 .OOE+05 g. 37E+04 23. .44 1632 

30 0.06750 0.067 4 6000 3 0 0. 015 4 .OOE+05 8. 1
 

22. .39 2032 

37 0.10000 0.070 2 6000 3 0 0. 015 4 .00E+05 8. 57E+04 21. 43 3632 

M H 0 P 0 R S T U V 

0 0 0 .000 0 .000 

1 400 0 .000 - 0.00 0 .010 100 .00 - 0 .0000 

3 400 0 .012 1 .OOE+05 100.00 0 .010 83 .33 0 .8333 - 0 .8333 

5 4 0, .012 1 .OlE+05 42.86 0 .010 35 .71 0 .8333 - 0 .8278 

6 4 0, .012 1 .OlE+05 41.38 0 .010 34 .48 0 .8333 - 0 .8251 

7 4 0, .031 3, .92E+04 100.00 0 .012 38 .71 0 .3671 - 2 .4671 

8 4 0. .031 3. (D
 1
 

67.39 0. .012 26 .09 0 .3871 - 2. .4590 

11 4 0, 031 3. .97E+04 64.58 0. .013 27 .08 0 .4194 - 2. .4351 

11 0 0. 049 2. .51E+04 lOD.OO 0. 014 28. .57 0, .2857 - 4. 8701 

12 400 0. 049 3. 33E+04 76.56 0. 014 21. .88 0, .2857 3.2667 3. 6765 

13 400 0. 049 4. 15E+04 73.13 0. 016 23. 88 0, .3265 3.2667 2. 9528 

17 400 0. 049 7. 41E+04 70.00 0. 018 25. 71 0. .3673 3.2667 1. 6520 

Table 6.21. 1-D Wave program. Selected local statistics for 
Processor 100, (x,y) = (7,4) 
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Figure 6.54. Picture of performance (dither plot): ID Wave, 
ss#4 at 10 msec., processor activity (black: 
computing; gray: communicating; white: none) 
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Figure 6.55. Picture of 
ss#4 at 10 

performance (dither plot): ID Wave, 
msec., cumulative communication time 



www.manaraa.com

197 

Figures 6.56 through 6.58 correspond to states of the 

system at 0.03 seconds (snapshot number 12). The displayed 

parameters are, respectively, processor activity, cumulative 

amount of time spent by the processor in computation 

activities, and cumulative amount of time spent by the 

processor in communication activities (sends, receives, and 

waits). The displayed parameters in Figures 6.59 through 

6.61, at 0.052 seconds (snapshot number 23), are identical to 

those presented for snapshot number 12. 

We can observe some recurring patterns in these images, 

however many of the specific features are yet to be explored. 

Indeed, these are complex states of the system! We are 

currently speculating on the application of fractal methods to 

characterize the complexity of such images. Observe the 

complementary relationship between Figures 6.57 and 6.58 and 

between Figures 6.60 and 6.61: dark regions in one correspond 

to light regions in the other. This is a result of the 

regular, symmetric properties of 1-D Wave. At a particular 

instant in time, processors that have spent a relatively large 

amount of time communicating have necessarily spent a 

relatively small amount of time computing. 

Finally, Figures 6.62 and 6.63 depict cumulative 

computation time and cumulative communication time, 

respectively, near the end of program execution (snapshot 

number 36 at 0.09 seconds). An interesting feature to note 

here is that the variations among the processors have 

diminished. That is, there appears to be greater balance in 

the system; this observation is supported by the global 

statistics reported in Table 6.19. 
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Figure 6.56. Picture of performance (dither plot): ID Wave, 
ss#12 at 30 msec., processor activity (black: 
computing; gray; communicating; white: none) 



www.manaraa.com

199 

i+Mâj 

|sÇs95Ç.? 

Figure 6.57. Picture of performance (dither plot): ID Wave, 
ss#12 at 30 msec., cumulative computation time 
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Figure 6.58. Picture of performance (dither plot): ID Wave, 
ss#l2 at 30 msec., cumulative communication time 
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Figure 6.59. Picture of performance (dither plot): ID Wave, 
ss#23 at 52 msec., processor activity (black: 
computing; gray: communicating; white: none) 
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Figure 6.60. Picture of performance (dither plot): ID Wave, 
5s#23 at 52 msec., cumulative computation time 
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Figure 6.61. Picture of performance (dither plot): ID Wave, 
ss#23 at 52 msec., cumulative communication time 
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Figure 6.62. Picture of performance (dither plot): ID Wave, 
ss#36 at 90 msec., cumulative computation time 
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Figure 6.63. Picture of performance (dither plot): ID Wave, 
ss#36 at 90 msec., cumulative communication time 
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chapter vii. 

discussion and conclusions 

I think of a computer display as a window on Alice's 
Wonderland in which a programmer can depict either objects 
that obey well-known natural laws or purely imaginary objects 
that follow laws he has written into his program. Through 
computer displays I have landed an airplane on the deck of a 
moving carrier, observed a nuclear particle hit a potential 
well, flown in a rocket at nearly the speed of light and 
watched a computer reveal its innermost workings. 

Ivan Sutherland [Sutherland, 1970] 

Future Work 

The most obvious direction for future work is to go 

beyond a prototype. While much work would be required to 

transform the prototype into a fully configured laboratory, 

the implementation is sufficient to indicate that there are no 

insurmountable problems. Equally important, it points to the 

potential of the approach, particularly the general treatment 

of measurement data and the use of the data plots, for 

visualizing program performance on concurrent computers. 

Based on our experiences with the prototype, we can prescribe 

with greater accuracy the ideal features of the tools and 

laboratory. 

Another fairly obvious direction is the extension of this 

approach with the appropriate features so that it may be 

integrated into a complete parallel programming environment. 
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possibly in support of visual programming [Shu, 1988]. A 

shorter term goal would be the inclusion of mechanisms for 

real-time processing of event data, which is important for 

program debugging. 

The approach may offer new insights into the problem of 

mapping a parallel algorithm onto an underlying parallel 

machine. It provides a framework to investigate the effects 

of using different topologies (particularly different 

dimensions) at the program, network, and machine levels of 

concurrent computing. For example, we can compare performance 

measurements resulting from executing programs on different 

architectures. This topic is discussed further in the next 

section. 

A few less obvious, but potentially fruitful, directions 

for future work relate to the following areas: 

(1) image algebra, 

(2) hypergraphics [Cluff, 1988], 

(3) cellular automata models [Wolfram, 1984] and [Toffoli 

and Margolus, 1987], and 

(4) chaos and fractals [Gleick, 1988] and [Zorpette, 

1988]. 

within the context of our approach, image algebra operations 

may be an alternative to conventional techniques for 

calculating summary statistics. The computational methods for 

image algebra can then be applied to the analysis of 

performance measurement data. For example, recall that the 

summary statistic for the average operation count of the 

system at time T may be defined as: 

op_cnt^YQp = SUMp (op_cnt) / Np at t=T 

The SUMp function adds values of opcnt from all processors at 
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time T. Np is the number of processors. Alternatively, let A 

be an image at time T, in which the cells are assigned values 

for the parameter opcnt. Let I be the identity image (i.e., 

all ones). Then we may use the dot product operation (•) to 

define the average operation count at time T: 

op_cnt;^yQp = A.I / Np at t=T 

Extensions to hypergraphics presentation techniques and 

tools that explicitly support the display of performance 

measurement data from event traces may be appropriate. The 

dot plots, or scatter plots, that were used (generated by 

MacSpin) are a type of hypergraph. Although cumulative 

activity and instantaneous activity could be displayed, 

current activity (i.e., the most recent event occurrences) was 

not easily displayed. 

Cellular automata models are similar in form to the cell 

plots. If they are also similar in function, they may prove 

to be useful for modeling concurrent computation at an 

abstract level. 

Finally, fractals (or fractal geometry) may offer a way 

to describe the (possibly) irregular shapes apparent in the 

data plots. There is a recent trend toward modeling complex 

systems using fractals. A distinctive feature of most 

fractals is self-similarity, that is, similar patterns on 

different scales or levels. At a low level, we may not be 

concerned with patterns; however, at a high level, we are 

concerned with patterns. Typically, there is some sort of 

boundary between order at the top level and chaos at the 

bottom level. In complex systems, that boundary between order 

and chaos tends to be a fractal. So fractals offer a kind of 

measurement as to where chaos may end and order (or control) 
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may begin. 

A Question of Dimension 

In several instances throughout the course of this work, 

issues regarding dimension have been raised. Dimension was 

introduced in Chapter I as a property of complex systems and 

defined as the number of connections from a member of a 

complex system to its neighboring members. We are faced with 

questions of dimension when we are investigating the logical 

and physical networks of nodes in a computer system. 

The dimension of the physical network is constrained 

within the three dimensions of physical space. In addition to 

topology, the geometry of the interconnections becomes a 

consideration. However, familiar Euclidean metrics may not be 

applicable to performance measurements if communication is 

restricted to orthogonal paths in the system. Performance 

measurements may need to be stated in terms of "taxicab 

metrics" [Hillis, 1985]. 

The mapping of the logical network onto the physical 

network necessarily places limitations on the topology and 

dimension of the logical network. For the logical network 

alone (i.e., considered in isolation), the greater its 

dimension, the greater its ability to support communication 

among the nodes. Unfortunately, greater dimensions result in 

wiring and timing problems for the physical network. Thus, at 

one extreme, we have large dimension hypercubes, which have 

nice logical properties. And at the other extreme, we have 

small dimension meshes, which have nice physical properties. 

The best logical network is still to be determined. It is 
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quite possible that a "compound hypercube" network (composed 

of moderate dimension hypercubes of hypercubes, and so forth) 

would have the best combination of logical and physical 

properties. That is, it would avoid the wiring problems of 

large "dimension hypercubes, yet be more effective for 

communications than a strictly nearest-neighbor mesh [Basore, 

personal correspondence, 1989]. Interestingly, the fractal 

nature of a compound hypercube network may be an important 

aspect of its performance. 

Finally, although a gray code mapping scheme was used to 

assign processors in the logical network to locations in the 

physical network, an optimal scheme is yet to be determined. 

Optimal may mean minimizing the length or the density of 

wires, among other criteria. The tradeoffs between different 

mapping schemes need to be investigated in order to identify 

the most important criteria. Our work should facilitate an 

evaluation of different mapping schemes. The criteria can 

then be used (by either hardware or algorithm designers) to 

configure a system for effective and efficient operation. 

Research Contributions 

This work has resulted in several important contributions 

to research relating to program performance on multicomputers. 

We emphasize visualization of performance measurement data. 

More importantly, we recognize that different computer systems 

may require different formats for representing performance 

data. Also, we propose to treat performance data in the sense 

of general multivariate data and apply the techniques and 

tools of multivariate data analysis for analyzing and 
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displaying the data. However, we can customize our approach 

since performance data is specialized because of its temporal 

and spatial characteristics. 

The idea of a machine perspective, outlined in Chapters 

III through V and illustrated in Chapter VI, distinguishes our 

approach to presenting measurement data. The two- and three-

dimensional data plots introduced to graphically represent 

program performance are unique in this area. Using this 

format, a system with hundreds or thousands of processors can 

be displayed at once. Other graphical representations 

currently in use do not easily support a system having a large 

number of processors, particularly a global or macroscopic 

view of the system. In particular, the development of images 

of program states is a novel contribution and presents 

numerous opportunities for future study. Also, a two- or 

three-dimensional plot is appropriate to accurately account 

for the behavior of the computer system in both time and 

space. It facilitates showing the flow or movement of 

granules of computation and communication throughout the 

system. Thus, we emphasize both computation and communication 

activities, and account not only for the time spent in these 

activities but also for the space used by these activities. 

The metrics that we defined capture the computation and 

communication information in meaningful ways. An objective of 

this work was to effectively couple qualitative observations 

and quantitative measurements of the system into a coherent 

representation of performance. 

Finally, we have developed a framework in which to study 

patterns in program execution. Patterns are visual and offer 

insight into the behavior of concurrent algorithms and the 



www.manaraa.com

212 

systems that execute them. Using appropriate tools, we can 

view the system as a whole as well as focus our attention on 

particular parts of the system, as dictated by an interesting 

or unusual feature within an image. Closer inspections that 

include details about the program and machine can reveal the 

innermost workings of the system. For example, we might find 

that an algorithm behaves poorly because it generates too much 

traffic at a particular location in the system at a particular 

time. Or we might find that a faulty processor is causing 

inefficiences. 

Furthermore, we are only beginning to understand the 

importance of structure in concurrent computing; the 

structure of the problem, the program, the network, and the 

machine, and the relationship among these structures. The 

view of performance that we have developed should be a useful 

tool for investigating these structures. 
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